customer intelligence Archivos - artyco | the data driven company
91 640 41 50 hola@artyco.com
Qué son los KPI inteligentes

Qué son los KPI inteligentes

Qué son los KPI inteligentes

Los indicadores clave de rendimiento o KPI son un elemento fundamental en toda organización, para conocer si se han logrado los objetivos acordados, así como para la toma de decisiones. En una compañía data driven, las personas, los procesos y la tecnología se organizan en torno a unas métricas y a estos KPI. Sin embargo, estos KPI tal y como los conocíamos están evolucionando. Por ello, en este tipo de empresas, las prioridades de datos y analíticas, así como la autoridad de la toma de decisiones, se están redefiniendo a lo que ahora se llaman KPI inteligentes. ¿Quieres saber lo que son? En este post te lo cuento a través de un ejemplo. ¿Te van los datos? Entonces te va este post.

Si estás leyendo este post, es porque perteneces a una empresa sofisticada o estás en proceso de convertir tu negocio en uno en el que los datos no son un elemento más, sino una herramienta con la que mejorar y optimizar procesos, ventas y beneficios.

Con la llegada de la tecnología y su aprovechamiento por parte de la inteligencia artificial, muchos procesos y herramientas de management que teníamos asumidas se han visto revueltas, renaciendo versiones 2.0 de muchas de ellas. Este es el caso del KPI.

Todos sabemos qué es un KPI, ¿quién no los usa a menudo en su negocio? Sin embargo, seguramente tal y como los estás usando en tu empresa ahora mismo, no es la manera que se usará en el futuro más próximo. Por qué no decirlo… en la manera en la que se está usando hoy día en las empresas más punteras tecnológicamente y empresas data driven.

Esta nueva manera de utilizar el KPI, es lo que se denomina como KPI inteligente. No, no lo busques en Internet, ya que no encontrarás apenas referencias a este concepto, ya que es un término extremadamente novedoso, el cual, si lo aprovechas ahora mismo, es decir, a partir de hoy, podrás adelantarte decisivamente a tu competencia.

Un KPI inteligente es ir al segundo nivel, pasar a ese ‘next level’ al que toda empresa quiere llegar.

¿Quieres saber qué es un KPI inteligente? Vamos a por ello.

Habitualmente, los KPI se utilizan como medida de control de objetivos relevantes para el negocio. Un KPI inteligente, sin embargo, en un entorno de trabajo de Big Data e Inteligencia Artificial, no se queda en el simple hecho de ayudar a entender a posteriori qué ha sucedido. Un KPI inteligente te ayuda a predecir para prevenir proactivamente.

Por tanto, podríamos decir que una empresa que comience a utilizar KPI inteligentes pasaría de ser una compañía reactiva a otra muy diferente: una empresa proactiva. ¿Verdad que te gusta?

Sin embargo, conseguir esto no es nada fácil. Para lograr un KPI más anticipatorio y prescriptivo se necesita que este “aprenda” de él mismo. Para ello es necesario formar una maquinaria de Data Management que permita a la organización llevar a cabo este proyecto.

Dentro del Data Management, el gobierno del dato se convierte en un elemento fundamental para el éxito, así como la arquitectura del dato sobre el que se soportará toda la información necesaria.

Vamos a ver un ejemplo claro de cómo conseguir un KPI inteligente. En este caso con la tasa de abandono. Vamos allá

 

Cómo convertir la tasa de abandono en un KPI inteligente

Tasa de abandono como KPI inteligente

Muchas veces en otros posts relacionados he escrito que, el coste aproximado de adquirir nuevos clientes puede resultar entre cinco y veinticinco veces más caro que mantener los actuales.

En base a este dato, se establece el objetivo vital para muchas organizaciones, de aumentar la retención de sus clientes o reducir al mínimo la tasa de abandono.

Esta retención de clientes es crítica para cualquier negocio, si quiere garantizar la rentabilidad del mismo. Sin embargo, son las empresas de suscripción SaaS, financieras o de telecomunicaciones las que son especialmente sensibles a ello, siendo una prioridad estratégica reducir esa tasa de abandono.

Vamos a ver cómo empezamos… Lo primero de todo es comenzar con el gobierno de los datos. Este es realmente clave, ya que debemos distinguir entre la supuesta tasa de cancelación de clientes, o cuando un cliente deja de interactuar con la marca, y la tasa de cancelación de clientes absoluta, es decir, cuando un cliente cierra una cuenta o deja de usar un servicio.

Como hemos hecho con esto, habría que hacerlo con otras tasas como la reactiva y la prospectiva, las cuales determinan si un cliente se ha perdido por una mala experiencia, un cargo inesperado, un mal servicio, etc. Todo esto es más complicado de predecir, no obstante, es necesario poder correlacionar las experiencias negativas de los clientes con la propensión a la tasa de cancelación de clientes. De este modo, conoceríamos cuál es el comportamiento gradual que lleva a un cliente a la deconexión definitiva con la marca.

A través de analítica, de este modo, se podrían identificar diferentes grupos y segmentos que representen un mayor riesgo de fuga y así poder invertir en acciones sobre ellos.

Es habitual en estos casos, una vez tenemos una tasa de cancelación de clientes predictiva, alinearla con el KPI de CLV (Customer Lifetime Value), ya que suele ser necesario incorporar el valor de los ingresos a largo plazo y el potencial de ganancias que ese cliente aportaría.

Con esta incorporación, conseguimos alinear la urgencia del conocimiento circunstancial con la aspiración estratégica a largo plazo.

Para lograr esto, entra en juego otro elemento de Data Management que es imprescindible: la arquitectura de datos. Estos procesos de arquitectura de datos nos ayudan a conectar digitalmente el KPI, los datos, y la toma de decisiones estratégicas. Empresas como Amazon, Google o Netflix tienen esto muy claro, utilizándolo en su día a día, gracias a la gran digitalización de su negocio.

Gracias a esa arquitectura del dato y el gobierno de los mismos (si quieres saber más sobre ello, te invito a leer el post que escribí sobre: “Qué es el Data Governance”) se logra convertir los datos en un recurso estratégico.

 

La importancia del Data Governance para generar KPI inteligentes y decisiones automatizadas

El Data Governance en los KPI inteligentes

Si has leído hasta aquí, te habrás dado cuenta de que el gobierno correcto de los datos es fundamental para poder manejar de una manera óptima un KPI inteligente, ya que este es un importante medio para facilitar el KPI final.

El gobierno de datos amplía y recoge los análisis. En otras palabras, la finalidad y calidad de los análisis (sean regresiones crudas o clasificaciones de los tipos de aprendizaje profundo más sofisticados) dependen de la calidad, la cantidad, la exactitud y el origen de los datos, entre otros factores.

Y es que, cuando disponemos de un Data Governance correcto, y funcionamos con KPI inteligentes, los cuales son dinámicos, debemos pensar en una toma de decisiones que vaya a la misma velocidad que los KPI, es decir, una toma de decisiones automatizada, a través de máquinas. Te explico un poco a qué me refiero.

Una vez entras en la Era del KPI inteligente, debes poner la mente si o si en la toma de decisiones automatizada, es decir, aspirar a optimizar los KPI otorgando derechos de decisión a los algoritmos basados en datos que, técnicamente, aprenden más rápido, mejor, más barato y con más escalabilidad que cualquier ser humano.

Es más, una toma de decisión genera a su vez más datos, cambiando de nuevo la forma de medir el rendimiento. Todo ello en un ciclo infinito y cada vez más ágil.

Volviendo al caso de ejemplo anterior de la tasa de abandono, podremos definir cuándo realizamos una acción de manera automatizada y cuando a través del factor humano, en función de los resultados que nos de ese KPI inteligente. Por ejemplo, para perfiles de alto valor potencial, se pueden personalizar de una manera más dedicada de como lo podría hacer una máquina, algo que no haríamos en el caso de un perfil de valor más bajo.

 

Como ves, el dato, la tecnología y la inteligencia artificial están generando nuevas maneras de entender los procesos de negocio. Lo que ahora mismo suena complicado, en unos pocos años estará perfectamente asumido por cualquier empresa que quiera liderar su mercado, siendo necesario contar con un socio estratégico y operativo que permita afrontar los retos del dato y las decisiones basadas en información o data driven.

Si estás buscando dar ese salto, te invitamos a que te pongas en contacto con nosotros y llevarte hacia el mundo data driven.

Emilio Fernández Lastra

Chief Marketing Officer

“Después de la hipoteca, el inbound marketing es la mejor
herramienta para asegurar una relación a largo plazo”

¿Te ha parecido interesante lo que has leido?

En artyco podemos ayudarte a conseguir tus objetivos

¿Hablamos?

Si, quiero

+34 916 404 150

hola@artyco.com

© Artyco comunicación y servicios - Todos los derechos reservados

Qué es la visualización de datos o DataViz y qué beneficios tiene

Qué es la visualización de datos o DataViz y qué beneficios tiene

Qué es la visualización de datos o DataViz y qué beneficios tiene

Como su nombre indica, la visualización de datos es la representación gráfica de la información y los datos. Todo mediante elementos visuales, como gráficos, mapas, incluso iconos que ayude en la interpretación. Aunque parezca raro, la verdad es que muy pocas empresas tienen acceso a un DataViz óptimo, el cual les ayuden a tomar decisiones en función de lo que allí están observando. En este post, te voy a contar exactamente qué es un Data Visualization, su importancia, qué beneficios tiene para tu empresa, así como, cómo crear el DataViz ideal a través del Storytelling. ¿Empezamos?

Que hayas decidido leer este post, pone de manifiesto que eres un ‘marketiniano’ avanzado, con la mente abierta. Tarde o temprano, todas las personas que nos dedicamos al marketing nos hemos dado cuenta de la importancia que tienen los datos a la hora de tomar decisiones adecuadas. Para tomar estas decisiones, nos solemos basar en cuadros de mando o dashboards, es decir, la representación de las conclusiones de esos datos.

Sin embargo, ¿cuántas veces nos ha llegado un informe en el que nos encontramos con una maraña de gráficos sin sentido?

Comenzamos a echar un ojo, pero sólo vemos barras, líneas y números que no nos ayudan en nada. Observamos un poco más y vemos la solución a nuestro problema: una línea de texto que puede explicar qué se representa allí, pero lamentablemente cuando la leemos, tampoco nos soluciona mucho.

Cerramos el informe y seguimos con otro trabajo más apremiante.

Sin querer, quizás hayamos desperdiciado la ocasión de descubrir una tendencia en el mercado que podría haber originado importantes ingresos a nuestra compañía, o descubrir un patrón de comportamiento de nuestros clientes, el cual tendríamos que atender lo antes posible a través de nuestro servicio de atención al cliente, para evitar fugas. Sin embargo, hemos cerrado el informe y lo hemos dejado a un lado porque no era atractivo a nuestros ojos, y por qué no decirlo… si no estamos habituados a ello, porque no lográbamos entender nada.

Este problema ocurre en la mayoría de informes que presentan los departamentos de customer intelligence a dirección o a sus clientes. Y la verdad es que tiene todo el sentido. Te lo explico.

Un departamento de customer intelligence, suele estar integrado por estadísticos, matemáticos y expertos en Big Data, entre otros perfiles. También suele haber una figura que se llama Data Scientist, el cual dependiendo de la compañía, tiene unas bases de marketing o no.

Como entenderás, estos perfiles profesionales son auténticos cracks en crear algoritmos, realizar predicciones, prescripciones, y analizar bases de datos relacionales, sin embargo, seguramente ninguno de ellos es un crack en realizar presentaciones, armonizar un informe, y mucho menos, en crear un dashboard creativo el cual vaya contando poco a poco y sin hacer perder el interés del receptor, las conclusiones a las que ha llegado tras el análisis de los datos.

Debido a esto, salen los informes que salen.

Con la Visualización de Datos o DataViz lo que se busca es hacer representaciones gráficas de la información que han arrojado los datos, las cuales sean ante todo, atractivas al receptor. Para ello, la Data Visualization se aprovecha de elementos visuales como son los gráficos (de todo tipo), los colores, con el objetivo de dirigir la mirada a un dato en concreto, y las formas.

Por tanto, podríamos decir que la visualización de datos es una alternativa de arte visual que atrae nuestra atención y la dirige hacia el mensaje que queremos transmitir. Cuando vemos un gráfico, rápidamente identificamos las tendencias y los valores atípicos. Si podemos observar la información, nos resulta más fácil asimilarla.

Algo que muy pocas empresas entienden, es que la visualización de datos se basa en contar historias con un propósito: entender la información para poder tomar decisiones adecuadas de negocio.

 

Principales beneficios de la Visualización de Datos.

Visualización de datos Beneficios

 

Los beneficios que tiene la DataViz son evidentes, no obstante, es interesante enumerarlos y tenerlos todos al alcance de la mano para poder asimilarlos mejor. Unos son más obvios y otros no tanto. Vamos a por ellos.

#1. Ayuda a tomar decisiones de manera correcta. Esta es quizás la más evidente de todas. Con el Big Data y la cantidad de datos arrojando información valiosísima, se hace necesario una correcta visualización para poder realizar una adecuada toma de decisión por parte de profesionales ajenos a los datos.

#2. Mejora el análisis de datos ad hoc. Una visualización de datos avanzada te permite ver resultados de cualquier procesamiento algorítmico complejo, obteniendo así un análisis adecuado.

#3. Ayuda a la divulgación de la información. Disponer de la información resultante tras un análisis, en un formato claro, visual y sencillo, hace que esta sea distribuida a lo largo de la compañía, teniendo acceso a ella más gente, y por tanto, convirtiendo a tu empresa en una compañía más informada e ‘intelligence’.

#4. Aumento del ROI. Este es uno de los KPIs más importantes, ya que muestra el retorno de la inversión. Una excelente manera de conocer cuál ha sido y gracias a qué inversiones se han conseguido cuáles beneficios, es a través de la DataViz. Si conoces fácilmente ese ROI, podrás aumentarlo.

#5. Ahorro de tiempo. La Data Visualization hace más accesible la información a diferentes departamentos, tal y como he comentado antes, y esto hace que se puedan tomar decisiones interdepartamentales de manera más ágil, ya que esta es clara y sencilla de entender, sea la disciplina que sea el departamento.

Ahora que ya conoces lo que es la visualización de datos, su importancia y qué beneficios tiene, vamos a ver de qué manera podemos construir un DataViz eficaz y moderno, sirviéndonos de la técnica del storytelling.

 

Cómo crear un DataViz a través del Storytelling

Visualización de Datos con Storytelling

 

Storytelling es el arte de contar una historia. El objetivo del storytelling es conectar con el receptor del mensaje, a través de un hilo con un personaje, un planteamiento, un desarrollo y un desenlace. Pero no se queda ahí, esta debe enganchar emocionalmente con el receptor, tocándole la cabeza, el corazón y el alma.

 

“La gente olvidará lo que dijiste, la gente olvidará lo que hiciste, pero la gente nunca olvidará cómo le hiciste sentir”. Maya Angelou.

 

En la visualización de datos, lo que se busca es aprovecharse de esta técnica para contar las conclusiones a las que se ha llegado con el análisis de datos, de una manera atractiva y coherente con el negocio que se analiza, sabiendo dirigir la información como si de una historia se tratara, consiguiendo que el receptor no pierda el interés en ningún momento, y descubra poco a poco la información, desde el principio y hasta el final.

El Storytelling en el DataBiz, ayuda a las personas y a las organizaciones a crear gráficos que tengan sentido y los entrelacen en historias convincentes e inspiradoras de la acción.

 

Es llevar la Data al siguiente nivel. Las fases para crearlo serían estas:

 

#1. Entiende el contexto. Como es lógico, lo primero que hay que hacer es entender el sector, el momento económico que vive la empresa y su mercado, los cambios que vienen, fortalezas, amenazas… para así poder situar la información que se analice, dentro de ese contexto y que no quede ajena a la situación real, algo de lo que se suelen quejar las empresas al recibir los informes finales.

#2. Elige unos elementos visuales adecuados para la marca. No se pueden utilizar los mismos tipos de gráficos para una marca de automoción, que para otra de ropa de bebés. Es fundamental saber seleccionar el ambiente visual sobre el que se crearán los dashboards, los tipos de gráficos a utilizar, así como los diferentes elementos visuales de apoyo, que ayuden a entender mejor los resultados.

#3. Elimina aquella información y datos que realmente no son trascendentes para el objetivo de ese informe. Muchas veces queremos mostrar cada paso que nos ha llevado a una conclusión determinada, incluir el gráfico que muestra esa predicción que tanto trabajo nos ha costado sacar y que tan orgullosos estamos de ella. Sin embargo, es posible que, ninguno de esos datos sean importantes para quien lo tiene que leer, para la toma de decisiones, o lo que es más importante, no tenga que ver con el objeto del informe. Este exceso de información hace que pierdas foco en lo que verdaderamente importa y por lo que te están encargando dicho informe: tener una serie de datos relevantes para poder tomar una decisión estratégica o táctica de negocio. Por tanto, sigue esta premisa: menos, es más.

#4. Pon el foco en aquello que quieres destacar. La mejor manera de enfatizar un dato que queramos destacar es a través del uso del color o de las formas. No llenes tu dashboard de colores, selecciona una paleta de color monocromática (por ejemplo, diferentes tonos de azul) y un color complementario (lo ideal es que sea el corporativo de la empresa) para resaltar aquellos datos que te interesen de un gráfico, una tabla, etc. Intenta que esa paleta monocromática sea apagada y complementaria a tu color de enfoque visual. También puedes utilizar una forma diferente que haga destacar ese dato concreto.

#5. Cuenta una historia. Has analizado todos los datos, lo sabes todo acerca del mercado, el problema o el cliente. Y has dado con unas conclusiones asombrosas. Ahora debes hacerlo atractivo, y la mejor manera es a través de una historia.

Para mí, es muy difícil conseguir que mis hijos presten atención a algo, sin embargo, cuando les cuento una buena historia, abren los ojos y no dejan de escuchar hasta que esta termina. Todos los decisores han sido niños, y aunque nos cueste admitirlo, a todos nos gusta que nos cuenten una buena historia.

Crea una historia entorno a las conclusiones que quieres lanzar y apóyate con aquellos datos que consideras que demuestran esas conclusiones. Por último, cierra con lo más relevante que quieras contar. Ese resultado asombroso al que has llegado. Este será el desenlace de tu historia.

 

Se que un dashboard es relativamente fácil de hacer. De hecho, hay muchas herramientas que te ayudan a realizarlo. Lo realmente complicado es crear un verdadero DataViz atractivo, visual y que cuente una historia, que ayude a tomar decisiones. Por eso, en artyco ponemos especial mimo en la visualización de datos, ya que es la guinda del pastel de todo un trabajo de data science, análisis y business intelligence. ¿Hablamos?

 

Emilio Fernández Lastra

Chief Marketing Officer

“Después de la hipoteca, el inbound marketing es la mejor
herramienta para asegurar una relación a largo plazo”

¿Te ha parecido interesante lo que has leido?

En artyco podemos ayudarte a conseguir tus objetivos

¿Hablamos?

Si, quiero

+34 916 404 150

hola@artyco.com

© Artyco comunicación y servicios - Todos los derechos reservados

Cómo es el consumidor actual

Cómo es el consumidor actual

Cómo es el consumidor actual

Hace décadas todos sabríamos definir de una mejor o peor manera cómo es el consumidor, cómo se comporta y qué le motiva. Sin embargo, en los últimos años todo ha cambiado. Este consumidor poco tiene que ver con el que antes era, interviniendo o entrando en juego un mayor número de canales, influencias, y creando nuevas motivaciones y procesos de compra. Esto ha originado un nuevo consumidor: el consumidor omnicanal hiperconectado. ¿Quieres saber un poco más sobre él?, pero, sobre todo, ¿quieres conocer cuáles son las tendencias de estos consumidores, las cuales están cambiando el consumo en la actualidad? Aquí te lo cuento todo.

Conocer al consumidor no tiene que ver sólo con saber qué le gusta comprar. Conocer al consumidor tiene más que ver con descubrir cuáles son las razones por las que compran un producto, dónde lo hacen, cómo, y sobre todo, con qué frecuencia. De igual modo, es interesante saber cuáles de estos consumidores influyen a su vez sobre la compra de otros, a través de sus opiniones, vertidas en las tiendas online o en las redes sociales.

Los últimos avances tecnológicos, así como el aumento de la confianza del consumidor en los medios digitales para realizar sus compras, han propiciado que el proceso de compra varíe. Todas estas variaciones, han dado origen a un nuevo estilo de hacer marketing, en el cual hay que dejar de ofrecer productos o servicios masivos, personalizando al máximo aquello que lanzas al mercado, teniendo, por tanto, una visión customer centric, en la que el estudio del consumidor, qué desea, cómo y cuándo, tienen una importancia máxima.

Por poner un ejemplo, los medios que ofrecían productos masivos a la mass media, están desapareciendo. Hoy día, el consumidor no busca productos o servicios en serie, busca experiencias, las cuales le hagan apasionarse por el producto, la marca y la empresa. Por lo general, las experiencias son memorables y esto es lo que hace que hablen positivamente de nosotros, y lo difundan a través de sus canales preferidos, y donde tienen voz, es decir, en las redes sociales.

Las experiencias por tanto facilitan el marketing de recomendación, el cual no se debe descuidar, ya que poder mantener esta estrategia en el tiempo, ayudará a tener un flujo de nuevos clientes, y clientes fieles. Para ello, es necesario trabajar el Customer Relationship Management.

Por tanto, el crear productos y servicios personalizados, así como saber comunicarte con tus clientes y potenciales a través de sus medios favoritos y cuando ellos prefieren, necesita de una capa de inteligencia de negocio enfocada en el conocimiento del consumidor.

Lo importante hoy día, en este mercado que estamos viviendo, es desarrollar estrategias que se adapten a la realidad del consumidor, y que además funcionen sin importar los cambios internos o externos que se generen, con el objetivo de fidelizar.

El mercado va a seguir creciendo y cambiando, por tanto, es responsabilidad del departamento de marketing conocer quiénes son sus clientes y potenciales, con el objetivo de poder llegar a satisfacerles en sus necesidades, tanto presentes, como futuras.

Como te he explicado, es fundamental hoy día conocer al consumidor. A continuación, te voy a dejar 10 tendencias en los consumidores, que están cambiando la manera de consumir. Creo que esta parte te va a gustar mucho…

10 tendencias que están marcando las ventas en los consumidores actuales

Tendencias consumidor actual

Según el último estudio sobre el estado del mercado global que acaba de publicar el mes pasado Euromonitor, los consumidores tienen la sensación de que hoy día las cosas están fuera de control, sobre todo por lo rápido que está cambiando todo. Esta sensación les ha hecho consumir de una manera desorganizada, la cual quieren cambiar, tomando una mayor posesión y control de sus vidas, y por tanto, también de lo que consumen y cómo.

Este hecho es el que marca estas diez tendencias que te presento.

 

#1. Un consumidor Age Agnostic.

Ya no vale la clásica segmentación de edad, en la que clasificábamos a nuestro público objetivo por este criterio, y cuánto más cerrada fuera la horquilla de edad, más definido teníamos a ese público.

Ahora, el consumidor se siente y se comporta como si fuera más joven de lo que en realidad es. Las personas de hoy día gozan en general, de una mejor salud. El deporte, la cosmética y la concienciación por una alimentación saludable ha originado que vivamos con una mejor calidad y más años.

Como tal, el consumidor ya no se auto-encasilla en una franja de edad. Por ejemplo, la tercera edad se siente joven y quiere hacer cosas y vivir experiencias de jóvenes. Además, este grupo generacional correspondiente a los Baby Boomers dispone de tiempo y dinero para consumir, pasando a ser un target fundamental para cualquier marca. Si quieres saber más sobre las oportunidades de esta generación, echa un vistazo a “Los Baby Boomers. Cómo seducir a la generación con mayor capacidad de consumo”.

El diseño de productos y las estrategias de marketing ya no pueden guiarse por los clásicos cánones de edad para llegar a los consumidores.

 

#2. Preferencia por el ‘Back to the basics’.

El consumidor está cansado de los productos hechos en serie, baratos, pero de muy mala calidad, los cuales ves en todas partes y no te ayudan a diferenciarte del resto.

Hay una tendencia clara de buscar productos básicos de calidad. Euromonitor denomina a este tipo de consumidores, como los Localovers, es decir, aquellos que se preocupan por buscar el plato regional más típico de una localidad en concreto; los que compran cosmética natural artesanal; aquellos que compran cepillos realizados con crines de caballo, siempre y cuando se haya respetado al animal en todo el proceso; etc.

Al final, todo vuelve a redundar en lo de siempre, la búsqueda de una experiencia única que te brinda el comprar o consumir un producto único, de calidad y especial.

 

#3. Un consumidor con una mayor conciencia.

El consumidor de hoy día cada vez muestra una mayor preocupación por la naturaleza y por los animales. Si disponen de la opción, en la búsqueda de un producto, hay quienes ya incorporan el término ‘animal friendly’ para acotar más sus resultados, por poner un ejemplo.

Hoy día es fundamental ser una empresa o marca sostenible, que no teste sus productos con animales o que no utilice componentes químicos que puedan dañar el medio ambiente en su composición, por poner varios ejemplos.

El consumidor de este siglo es más vigilante con el medio ambiente y los animales a la hora de consumir, y este aspecto debe de ser tenido muy en cuenta por las marcas a la hora de diseñar sus productos y comunicar.

 

#4. Es un consumidor hiperconectado.

Una de las consecuencias que ha tenido Internet en la sociedad actual, ha sido la posibilidad de conectar personas en cualquier lugar, en cualquier momento. El consumidor ya se ha adaptado a este factor y lo ha incorporado como algo intrínseco de su persona. Cuando quiere comunicarse con alguien, tiene que poder hacerlo, y una marca no es diferente.

Además, Internet está creando la conciencia de que no estamos solos. Y no me refiero a que hay vida en otros planetas, sino a que La Red nos une unos con otros, pudiendo compartir cosas, intercambiar opiniones o informarse de lo que fuera, en cualquier momento y con quien deseemos. A este hecho se le ha denominado ‘Digitally Together”, es decir, estamos juntos, aunque sea de manera digital.

Este es un hecho que debe tener en cuenta y controlar cualquier empresa, y disponer de un excelente sistema de comunicación con sus clientes y potenciales 24/7, así como información fácilmente accesible.

 

#5. El consumidor es ahora un experto.

Una de las palabras que más se utilizan en las búsquedas de Google en lo relacionado con los productos, según el mismo estudio, es ‘el mejor’, ‘los mejores’. El consumidor actual busca lo mejor, y para ello se informa, contrasta opiniones, lee artículos, fichas técnicas…

Antes, el experto de un producto era la marca. La información sobre ese producto giraba lógicamente entorno a ella. Hoy día ese epicentro ha cambiado de lugar, siendo el consumidor quien ha asumido ese rol, autodefiniéndose como un experto para él y para el resto de consumidores. Esta es una característica típica de la generación de los millennials, quienes buscan datos, filtran información y consultan múltiples fuentes para tomar la decisión de compra. Si quieres profundizar en esta generación, te recomiendo echar un ojo a “Qué buscan y cómo compran los millennials”. Este post está centrado en el sector automoción, pero te puede servir para hacerte una idea de cómo son.

 

#6. Un cliente JoMO.

JoMO o “joy of missing out” es la última tendencia de los consumidores a nivel global. Hemos pasado de no querer perdernos nada, a valorar nuestro tiempo para disfrutarlo nosotros. Ahora el placer es perderse cosas.

Esta tendencia conduce a los consumidores a poner unos límites claros e intentar dedicar más tiempo para ellos.

Es una cultura que apuesta por ser mucho más selectivo a la hora de comprar, decidiéndose por aquellos productos o servicios que no le impliquen una pérdida de tiempo o al menos, que no les consuman demasiado de su tiempo. Quieren desconectar más, y valoran los espacios sin conexión a Internet, para evitar distraerse de su experiencia de relax.

 

#7. Consumidor egocéntrico.

El consumidor, a pesar de pensar en el medio ambiente y la sostenibilidad, es un consumidor que piensa más en sí mismo. Compra con la intención de que le genere a su vez, un beneficio o un placer a él.

Se dice, que el proceso de compra se va asemejando cada vez más al proceso de cualquier producto de belleza, en el que buscas encontrarte bien contigo mismo durante la compra y una vez consumido.

 

#8. El plástico ha muerto.

Para el consumidor actual, el plástico debe desaparecer de todo packaging, envoltorio, o similar. El grado de concienciación con el problema que está ocasionando las toneladas de plástico en nuestro planeta, ha hecho que influya una compra u otra en función de la presencia o no de este material.

Si quieres saber más sobre el perfil de la generación más ecológicamente concienciada, te recomiendo echar un vistazo al post sobre “La Generación Z. Quiénes son y cómo influirles con acciones de marketing”.

 

#9. Inmediatez.

Debido a Internet, los nuevos consumidores se han vuelto más impacientes. Si adquieren algo, lo quieren para ya. Valoran los plazos de entrega super ajustados, las aplicaciones para el móvil que les ayuden a ahorrar tiempo, incluso están dispuestos a pagar más por algo, si lo tienen al momento.

 

#10. Los solteros al poder.

Según ciertos estudios, en el año 2030, teniendo en cuenta todas las generaciones, el número de hogares de solteros habrá aumentado hasta los 120 millones, un 30% más que en 2018.

Cada vez hay más gente que ha decidido vivir sola, detectando que, entre los mayores de 50 años la tendencia es a llevar una vida en soledad por diferentes motivos. A este tipo de personas se les ha denominado “solo lifestyle”, las cuales quieren sacar el máximo provecho a su vida, de manera individual.

Como es lógico, este hecho debe de tenerse muy en cuenta a la hora de definir un packaging y las cantidades de los productos, tendiendo a ser cada vez más reducidas o integradas en envoltorios individuales, ya que el consumo por unidad familiar será lógicamente menor.

Como habrás podido ver, es fundamental conocer perfectamente cómo es el consumidor, y así poder realizar estrategias acordes con lo que ellos buscan y esperan de tu marca. Si estás intentando poner en marcha estrategias customer centric, seguro que podemos ayudarte. ¿Hablamos?

Emilio Fernández Lastra

Chief Marketing Officer

“Después de la hipoteca, el inbound marketing es la mejor
herramienta para asegurar una relación a largo plazo”

¿Te ha parecido interesante lo que has leido?

En artyco podemos ayudarte a conseguir tus objetivos

¿Hablamos?

Si, quiero

+34 916 404 150

hola@artyco.com

© Artyco comunicación y servicios - Todos los derechos reservados

Qué es la analítica aumentada y por qué deberías comenzar a utilizarla

Qué es la analítica aumentada y por qué deberías comenzar a utilizarla

Qué es la analítica aumentada y por qué deberías comenzar a utilizarla

El término de analítica aumentada surgió a raíz del informe anual Hype Cycle de la empresa de estudios de mercado Gartner, en 2017. A partir de entonces, en el ámbito del Business Intelligence no se ha dejado de hablar sobre ello, sin embargo, no ha trascendido demasiado, ¿por qué? En este post quiero contarte qué es la analítica aumentada, por qué la llaman “el futuro del análisis de datos”, qué ventajas tiene, y por qué deberías de comenzar a utilizarla. ¿Te interesa? Vamos a ello.

La analítica aumentada o Augmented Analytics, lo define Gartner en su documento Magic Quadrant for Analytics and Business Intelligence Platforms como “un paradigma que incluye consultas de lenguaje natural y narrativo, preparación aumentada de datos, análisis avanzado automatizado y capacidades de descubrimiento de datos visuales”. En ese mismo documento, inciden en la importancia que tendrá la Analítica Aumentada en el 2020, actuando como impulsor del Business Intelligence, el Data Science y el Machine Learning.

 

Gráfico Hype Cycle 2017 de Gartner

Gartner Hype-Cycle for emerging technologies, 2017

 

Quizás, todo esto te pueda sonar a chino… o no. En ambos casos, sólo te puedo decir que la analítica aumentada no aporta ninguna novedad. Lo realmente innovador es la vuelta de tuerca que le da en cuanto a la extracción de conocimiento de las diferentes fuentes de datos que posee un negocio. Esta vuelta de tuerca se sustenta bajo estos 3 pilares:

  • La Inteligencia Artificial (IA). Te recomiendo que eches un vistazo el post que escribí sobre “Cómo hacer Customer Intelligence con Inteligencia Artificial” para que puedas tener una visión más amplia de su utilización a día de hoy en Business Intelligence.
  • El Machine Learning. Es decir, un método de análisis de datos que automatiza la construcción de modelos analíticos. Es una rama de la inteligencia artificial basada en la idea de que los sistemas pueden aprender de datos, identificar patrones y tomar decisiones con mínima intervención humana.
  • El Procesamiento de Lenguaje Natural (NLP). Es decir, un campo de conocimiento de la Inteligencia Artificial el cual se encarga de investigar la manera de comunicarse las máquinas con las personas a partir de lenguas naturales, como el español, el inglés o el francés.

La importancia real de este enfoque radica en que la combinación de estas 3 ramas de la analítica, posibilitan la extracción de información de forma automatizada. Pero lo mejor de todo, es que puede realizarse sin necesidad de disponer de unos grandes conocimientos técnicos. La introducción del NPL, hace que cualquier consulta sea tan sencilla como preguntar a Siri o Alexa qué tiempo va a hacer mañana.

Hasta ahora, existe una gran variedad de sistemas que permiten recoger datos, normalizarlos y analizarlos. La gran diferencia está en que hasta este momento, sólo las grandes empresas o aquellas especializadas en el dato, disponían del personal y las herramientas necesarias.

Este tipo de analítica va a suponer, por tanto, la introducción a la analítica avanzada para empresas que no pueden disponer hoy día de un equipo completo de científicos de datos, debido al alto coste y la dificultad de encontrar profesionales adecuados. Empresas de tamaño medio que no puedan permitirse soluciones y desarrollos a medida, así como grandes empresas con la necesidad de poner en valor sus datos en tiempo récord, van a obtener en la analítica aumentada un socio perfecto.

Con la Analítica Aumentada se lograría, por tanto, la democratización del dato, pero sobre todo, la democratización de la conversión de los conocimientos que ofrecen los datos, en insights, algo muy valorado por cualquier departamento de negocio y de marketing de cualquier empresa.

En estos momentos, la herramienta más conocida y la que más está trabajando en analítica aumentada, es IBM Watson Analytics, aunque ya hay otras trabajando en el mismo sentido. Tableau Insights y Qlik Sense son otras herramientas que están apostando por ello. No obstante, se tiene previsto que conforme avance la Inteligencia Artificial habrá más players en el mercado de plataformas.

 

Ventajas de la Analítica Aumentada

Ventajas de la analítica aumentada

Como podrás suponer, la Analítica Aumentada te ofrece unas ventajas muy directas relacionadas, sobre todo, con la accesibilidad del dato a todo tipo de empresas y tamaños. Las principales ventajas serían estas:

  1. Cualquier usuario de analítica aumentada, con un mínimo de conocimiento sobre cómo funciona y qué aporta, podrá obtener relaciones e insigths de valor, procedentes de los datos almacenados por la compañía. A diferencia de quienes no la utilicen, que tendrán que optar por acudir a profesionales especializados en ciencia de datos con perfiles muy técnicos.
  2. La Analítica aumentada permite disponer de cuadros de mando de manera automática y comprensible, así como de enfoques descriptivos y predictivos con la misma sencillez.
  3. Esta es especialmente potente en la elaboración de predicción de tasas de abandono de clientes, análisis de resultados empresariales, detección de anomalías en las cuentas de la empresa, identificación de fraudes, creación e identificación de patrones de consumo, y en definitiva, en la mejora en el conocimiento del cliente.
  4. A la hora de realizar consultas, ya no será necesario utilizar lenguaje SQL, tal y como se viene haciendo. Gracias al PLN (Procesamiento de lenguaje natural), sólo con decir “Muéstrame la variación de gastos por línea de negocio en el último año” será suficiente para obtener el resultado de la consulta. Facilitando tremendamente el trabajo para “No Data Scientists”.

Después de ver las principales ventajas que supone la analítica aumentada, quiero convencerte aún más con las principales razones por las que tu empresa debería comenzar a utilizarla.

 

Razones para comenzar a utilizar ya la Analítica Aumentada

Puesta en Marcha de la Analítica Aumentada

Si has intentado abordar un proyecto de Business Intelligence en tu negocio, te habrás dado cuenta que el mayor problema es lo costoso que es ponerlo en marcha, si no hablamos de la dificultad de encontrar perfiles adecuados a ese trabajo.

El tiempo de implantación también es una barrera importante. Y una vez implantado, mucho trabajo es manual, entrando en juego la posibilidad del error humano. Además, al ser realizado por personas, puedes cometer el riesgo de que el resultado final esté sesgado.

Con la analítica aumentada, en cambio:

  • Los análisis y las predicciones que se realicen serán totalmente imparciales, obteniendo, además, un resultado preciso.
  • Este tipo de analítica ofrece una gran variedad de automatizaciones, agilizando por tanto cualquier proceso de recogida, extracción y análisis de datos.
  • Una compañía con un equipo de Business Intelligence, está continuamente analizando los datos que genera la compañía. Sin embargo, mucha de esta data no proporciona información de valor que pueda contribuir a los ingresos o a un retorno de inversión de la compañía. Además, el porcentaje de datos que es analizado, es una mínima cantidad de datos de todo lo que generan diariamente las compañías. Con la analítica aumentada los especialistas pueden abarcar mucho más, ofreciendo más y mejores insights.
  • En definitiva, todas estas ventajas para tu empresa se traducen en que la toma de decisiones tiene un coste menor.

 

Con esta técnica, las empresas podrán disponer de información más confiable, más variada, más puntual y más útil para sus estrategias de negocio.

En Artyco llevamos años ayudando a nuestros clientes en el campo del Business Intelligence, a través de nuestro equipo de Data Scientists, Marketing Intelligence y Data Analists, pero también a través de soluciones tecnológicas que propicien la generación de insigthts verdaderamente útiles para los negocios de nuestros clientes. ¿Hablamos?

Emilio Fernández Lastra

Chief Marketing Officer

“Después de la hipoteca, el inbound marketing es la mejor
herramienta para asegurar una relación a largo plazo”

¿Te ha parecido interesante lo que has leido?

En artyco podemos ayudarte a conseguir tus objetivos

¿Hablamos?

Si, quiero

+34 916 404 150

hola@artyco.com

© Artyco comunicación y servicios - Todos los derechos reservados

Del Business Intelligence al Marketing Intelligence. Principales desafíos para implantarlo

Del Business Intelligence al Marketing Intelligence. Principales desafíos para implantarlo

La inteligencia de negocio en función del tipo de empresa, puede vivir independientemente o bien puede estar integrada dentro de otro departamento. Pero lo que está claro es que esta tiene mucho en común con los sistemas de gestión de relaciones con el cliente, o lo que llamamos CRM. El avance de la tecnología, el desarrollo del machine learning y la IA, han potenciado enormemente esta disciplina, integrándose inevitablemente con los departamentos de marketing, creando lo que se llama el Marketing Intelligence, pero ¿están los Data Scientists preparados para este reto?, ¿son capaces los profesionales del marketing de manejar tal cantidad de datos? En este post te pondré en situación de hacia donde se tiende, así como de cuáles son los retos que deben superar las empresas para conseguirlo.

El CRM se compone de tres elementos fundamentales: el operativo, el cual es el responsable de los procesos de contacto con el cliente; el analítico, en el que se analizan los datos que de este se desprenden; y el comunicativo, centrado en todas las acciones necesarias para mantener un diálogo con el cliente (email marketing, SMS, teléfono…). Por lo general, la inteligencia de negocio está integrada dentro de la mayoría de CRMs, aportando analítica que permita sacar insights y conclusiones.

El trato personal con los clientes se ha reducido muchísimo en casi todos los negocios, debido a la popularización de Internet como medio de información y compra, entrando en juego, por tanto, otros medios de comunicación directa relacionados con este sistema digital. Uno de ellos, es sin duda el móvil, a través de los Smartphones.

Este hecho ha supuesto que los departamentos de marketing dispongan de mucha más información de la tenían hace una década. Esta se ha venido gestionando a través de Data Warehouses, sin embargo, los profesionales del marketing no disponían de la capacidad suficiente como para poder auto-gestionar dicha información con dichos sistemas, entrando en juego nuevos perfiles en el ecosistema de marketing. Perfiles más técnicos, expertos en bases de datos, y perfiles que supieran sacar conclusiones de grandes cantidades de datos.

Durante este tiempo, el experto en Data, el Data Scientist y el Marketing Specialist han convivido gracias a la inmadurez respecto al dato del sector y de las empresas. Sin embargo, esto está cambiando, y el mercado está exigiendo un salto de calidad al tratamiento de datos. Este salto de calidad iría más dirigido a los insigths y conclusiones sacadas a través de los datos. Insigths que muchas veces los analistas no son capaces de sacar debido a su falta de visión de marketing y de negocio, a la vez que los profesionales del marketing no consiguen verlos, debido a su escasa formación en estadística y lectura de datos.

Como he comentado, el mercado está madurando, y pide avances. A continuación, te cuento cuáles son los principales retos o desafíos con los que se va a encontrar cualquier empresa que quiera basar su negocio en los datos. Ha llegado el momento del Marketing Intelligence.

 

Principales desafíos para implantar una estructura de Marketing Intelligence

Marketing Intelligence

El paso de una estructura Business Intelligence clásica a otra Marketing Intelligence que te permita poder obtener verdadero conocimiento que te ayude a conocer mejor a tus consumidores, crear estrategias más eficaces, y realizar propuestas de valor realmente interesantes para la sociedad a la que te diriges, pasa por los siguientes desafíos.

DESAFÍO #1. El Big Data.

Tradicionalmente, en un sistema de Business Intelligence, las bases de datos que se utilizaban eran bases de datos relacionales, en las que los datos se organizan en base a tablas con filas (registros) y columnas (campos), las cuales están ligadas a través de relaciones en los casos en que contienen el mismo tipo de información. Para realizar consultas se hace a través de queries las cuales filtran los datos y dan al emisor de la consulta la información buscada. Todo esto se hace a través de un lenguaje llamado SQL.

Pues bien, todo esto se ha roto a consecuencia de la irrupción del Big Data, debido fundamentalmente a tres variables:

  1. El volumen de datos. El Big Data se caracteriza por la gran cantidad de datos que almacena y maneja. Tal es la cantidad de datos que pueden llegar a almacenar algunas compañías, que estos tienen que estar guardados en diferentes servidores. La solución actual a este problema, hoy por hoy, es Hadoop, que no es otra cosa que un framework de opensource que permite almacenar una gran cantidad de información, permitiendo realizar procesamientos y tareas de manera prácticamente ilimitada. Entre las principales ventajas que tiene un Hadoop están la capacidad de almacenamiento, el poder de procesamiento, la tolerancia a fallos, la flexibilidad, el bajo coste que supone y su escalabilidad.
  2. La velocidad. Fundamentalmente debido a la aparición del IoT (Internet of Things), en el cual es necesario recoger datos y gestionarlos en tiempo real, la velocidad en las bases de datos se hace muy necesaria. Esto se consigue almacenando los datos in-Memory, es decir, es como tenerlos en una memoria RAM, la cual permite acceder a ellos instantáneamente y realizar procesamientos extremadamente rápidos, ayudando así a analizar rápidamente grandes volúmenes masivos de datos en tiempo real a velocidades muy altas, y detectar patrones.
  3. La variedad. Los datos recogidos hoy día no son sólo numéricos o textuales, sino que además pueden ser, por ejemplo, imágenes. Al entrar las redes sociales en nuestras vidas, este elemento se ha convertido en primordial para muchas empresas en todo lo relacionado con el análisis y creación de perfiles, ya que las imágenes se han convertido en un elemento de comunicación primordial para los usuarios (véase el caso de Instagram).

En definitiva, la irrupción del Big Data ha supuesto que se dejen atrás las bases de datos relacionales SQL y se abran los brazos a otros sistemas no basados en el SQL, más anárquicos, pero a la vez más flexibles y rápidos, los cuales utilizan otro tipo de tecnología, como pueden ser los Data Lakes (Si quieres saber qué son los Data Lakes, te recomiendo que eches un vistazo a este post sobre “Dara Warehouse y Data Lake. Qué son y para qué sirven”). Aquí se abre una problemática importante para cualquier empresa, y es que es muy complicado encontrar a profesionales expertos en estos nuevos sistemas, los cuales puedan tener una visión de empresa y de marketing que puedan ayudar a sacar verdaderos insigths.

DESAFÍO #2. La visualización de los informes.

Un sistema tradicional de Business Intelligence está acostumbrado a tratar una serie de datos y acabar realizando informes sobre las conclusiones sacadas tras sus análisis. Estos los hacían en un principio a través de extensas presentaciones de Power Point, las cuales al final perdían su objetivo de informar, ya que el receptor de las mismas, se ahogaba en un “sinfín” de datos, números y gráficos de todo tipo. Debido a este hecho, se crearon los Dashboards o paneles a través de los cuales tener una visión general de lo que quieres conocer, de una manera más abreviada y visual. Soluciones como Tableau, Qlik o Power BI te ayudan a crear diagramas, mapas y una gran variedad de recursos sin necesidad de saber programar.

El reto para llegar a un Marketing Intelligence está en que esas personas que desarrollan este trabajo, generalmente estadísticos y matemáticos sin conocimientos de Marketing, sepan priorizar qué datos son los que verdaderamente se necesitan para sacar conclusiones realmente importantes para la toma de decisiones en marketing.

Uno de los principales errores que se suele cometer respecto a este asunto es que los Data Analysts plasman de manera automática lo que analizan, perdiendo en muchos casos evidencias o rastros que no dejarían atrás si tuvieran los conocimientos necesarios sobre el mercado, la marca, el porqué de ciertas estrategias de marketing y el porqué de las acciones realizadas.

Ese dashboard del futuro para obtener un verdadero Marketing Intelligence, debe ir más acorde con unos objetivos marcados por la dirección de marketing, unas kpi`s para cada objetivo y unas conclusiones que permitan tomar decisiones rápidas y eficaces.

DESAFÍO #3. La evolución del Marketing Digital.

Todos somos conscientes de los cambios que ha experimentado el Marketing Online en los últimos años. Sin duda, la irrupción de las redes sociales es uno de los hitos más importantes, tanto por crear una nueva manera comunicación con los usuarios, sino también como una nueva fuente de información de estos. El mobile marketing, es otra área la cual está llevando a otro salto hacia esta industria. El avance en el uso de Apps, el incremento de la navegación a través de este dispositivo, su uso como método de pago, son algunas de las características que están haciendo plantearse a las empresas sus anteriores estrategias.

En todo este proceso, el uso de un CRM que incluye el aspecto social, así como que permita automatizar acciones, se ha vuelto imprescindible para cualquier negocio que quiera crecer con su tiempo. En este avance, el inbound marketing y el uso de la publicidad nativa tienen mucho que decir, ya que ambos necesitan disponer de información precisa y en tiempo real de lo que está haciendo el usuario con la marca en el entorno online, de cara a captarle, nutrirle, convertirle y fidelizarle.

Ya son muchas las empresas, las que invierten cada vez más en estrategias de fidelización, y no sólo en captación, viendo como una estrategia de contenidos personalizados a clientes que ya conocen, puede ayudarles a fidelizarlos, a aumentar el gasto medio de ese cliente, y a que estos ayuden en la captación al actuar como prescriptores.

Todo este nuevo ecosistema y tendencia en las estrategias, es necesario conocerlo de cara a poder realizar una labor adecuada de marketing intelligence.

Y la verdad es que la mayor parte de toda esta responsabilidad actualmente la están soportando los equipos de Data Science. Estos equipos para pasar a ser Marketing Intelligence, deben de tener, además de las características habituales, las siguientes:

  • Ser capaces de plantear las preguntas adecuadas, ya que esto va a determinar que tiene los conocimientos técnicos y la capacidad de ver el problema, pudiendo traducir la visión estadística en recomendaciones para quién visualizará el informe.
  • Debe ser capaz de comunicar utilizando lo que se llama un storytelling. El Data Scientist debe ser consciente que debe salir de la abstracción matemática y dirigir los resultados a un fin o una acción. Debe saber que todos esos datos y resultados matemáticos sólo tienen sentido si conducen a una acción.
  • Debe tener amplios conocimientos de herramientas y técnicas estadísticas y de machine learning para la resolución de problemas.
  • Conocimientos de R y Phyton, pero además, conocimientos de distributed computing (computación distribuida), se hacen cada vez más necesarios debido al auge que va a tener en el futuro el procesamiento en paralelo utilizando un gran número de ordenadores.

 

¿Quieres hacer Marketing Intelligence? En Artyco contamos con un departamento de Data Analysts y Data Scientists acostumbrados a saber leer entre datos y sacar conclusiones para ayudar en la toma de decisiones de nuestros clientes. A través de nuestro CRM o el que utilice nuestro cliente, una estructura propia de Data Warehouse y herramientas analíticas y de visualización como Power BI, podemos ayudarte a conocer y sacar de los datos todo el partido que necesitas. ¿Hablamos?

¿Decisiones basadas en datos?

Nuestro equipo de Data Scientists te ayudan a sacar esos insights y conclusiones que necesitas para realizar campañas más eficaces y tomar decisiones más acertadas.