Business Intelligence Archivos - Artyco
Qué son los modelos de atribución y cuáles utilizar

Qué son los modelos de atribución y cuáles utilizar

Has realizado tu plan de marketing, tienes definidas perfectamente tus estrategias y cada una de las acciones necesarias para poder conseguir los objetivos que te has marcado. El año avanza y poco a poco vas cumpliendo con los tiempos previstos, las acciones, y vas recogiendo los resultados. Sin embargo, ¿eres perfectamente consciente de cuáles de tus acciones están llevando a la conversión a tus clientes? ¿sabes en qué medida? Y ¿en qué fase del customer journey? Parece complicado ¿verdad? Todo esto se realiza con lo que se llama, modelos de atribución. ¿Quieres saber más sobre ellos? Allá vamos.

Si nos montamos en nuestra máquina del tiempo particular y nos trasladamos a los años 60, por ejemplo, era sencillo conocer qué canales de venta influían en una conversión. La publicidad en TV, la radio, prensa o PLV luchaban entre si para atribuirse los méritos de la venta final. Con sencillos tests y estudios de mercado, podíamos conocer qué medios y qué canales eran los que mejor nos funcionaban y así poder dirigir más inversión sobre estos en años siguientes.

Por desgracia o fortuna, depende de quién lo mire, todo esto ha cambiado. Con la entrada de los medios digitales, los canales y los medios han aumentado. El customer journey de cualquier consumidor se ha vuelto terriblemente complejo, y por tanto, para los profesionales del marketing, se nos ha complicado en gran medida la posibilidad de medir a cuál de nuestros partners atribuir el mérito de haber conseguido la conversión final.

Vamos a hacer un rápido repaso ¿Qué canales tenemos que tener ahora en cuenta? Estos:

  • Canales offline o tradicionales:
  • Televisión.
  • Radio.
  • Prensa.
  • Call Center.
  • Publicidad Exterior.
  • SMS.
  • Marketing Directo.
  • PLV
  • Marketing Promocional.
  • Canales online:
  • Email Marketing.
  • SEO.
  • Display.
  • SEM.
  • Enlaces directos.
  • Marketing de Afilización.
  • Comparadores online.
  • Medios Sociales.
  • Marketing de Influenciadores.

 

Los modelos de atribución sirven para poder asignar la conversión a un partner o al menos poder atribuir un porcentaje de atribución de la conversión final.

Seguro que a ti también te ha ocurrido que una mañana al levantarte tras haber estado la noche anterior viendo la televisión, y tras quedarte hipnotizado con el último spot del último Smartphone, mientras desayunas, decides coger tu móvil y buscarlo en Google para volver a verlo y saber más sobre él. Sin embargo, ves la hora y te das cuenta que llegas tarde al trabajo. Bloqueas el móvil y lo dejas aparcado para otro momento. En un descanso, entras en Facebook y te aparece un contenido patrocinado, donde te hablan sobre el nuevo modelo de ese mismo Smartphone y la comparativa respecto al anterior modelo. Te interesa, y entras. Te lo lees por encina, te gusta, pero tienes que seguir con tu trabajo. Al cabo de unos días, te llega un email en el que te anuncian el nuevo lanzamiento de ese Smartphone que tanto te gusta. Decides ir al punto de venta para tocarlo, ver su velocidad y que te resuelvan alguna duda. Allí te terminan de convencer y lo compras. ¿A qué partner debería la marca atribuir tu compra?

Los modelos de atribución no hacen otra cosa que permitir valorar los partners que hacen avanzar al consumidor en su customer journey.

Por tanto, podemos decir que un modelo de atribución es un conjunto de reglas por las cuales se asigna un determinado valor a los distintos canales por los que un usuario ha pasado antes de realizar una acción que interpretamos como una conversión.

Como hemos visto, los modelos de atribución van íntimamente ligados al Customer Journey, por tanto, lo primero que debes hacer es definir cuál es el customer journey en tu industria y los tiempos de este. Piensa que no es lo mismo el journey de un coche, en el cual tienes que pensarlo muy bien, recabar información de cada vehículo, visitar los concesionarios, estudiar los catálogos y preguntar a tu cuñado que sabe mucho de coches, hasta que te decides. Mientras que el journey de una camisa en un eCommerce, es mucho más rápido. Esto influirá a la hora de definir qué modelo de atribución utilizar.

A continuación, te muestro los principales modelos de atribución, los cuales se establecen en función de en qué momento de la interacción aplicas el mérito de la conversión.

 

Tipos de modelos de atribución

Modelos de atribución

Los principales modelos de atribución, ya preconcebidos, que se suelen utilizar son estos:

  1. Modelo de última interacción. Este se basa en que el último impacto que recibe el consumidor es el que le hace convertir. Este es el que te viene por defecto en cualquier herramienta de analítica web, y la verdad es que es demasiado simple. Puede que en algunos negocios sea así, pero parece demasiado obvio pensar que cualquier usuario convierte con la última interacción que tiene.

Modelo de última interacción

Modelo de última interacción

 

  1. Modelo de último clic indirecto. En este caso, se atribuye la conversión a la última campaña, previa a la conversión, teniendo en cuenta como campaña a todo aquello que atrae tráfico, a excepción del tráfico directo a la página web. Este modelo de atribución, desde mi punto de vista no tiene mucho sentido, ya que no tiene en cuenta todo el esfuerzo de branding realizado anteriormente, así como todas las campañas cuyo objetivo es crear tráfico directo, basadas también en el posicionamiento de marca y el recuerdo de esta, sin tener en cuenta todo el trabajo de fidelización. Podría valer para eCommerces que están comenzando y realizan acciones muy puntuales en el tiempo, sabiendo que en su mayor parte, las conversiones generadas vendrán a partir de esa acción que lleva al consumidor a la conversión final.

Modelo último clic indirecto

Modelo último clic indirecto

 

  1. Modelo de último clic de Google Ads. Lógicamente este modelo es sólo para tiendas online que les interesa medir la atribución de sus anuncios en Google Ads a sus conversiones. Como te habrás dado cuenta, este modelo no tiene en cuenta nada más, sirviendo exclusivamente para valorar este tipo de campañas.

Modelo de último clic de Google Ads

Modelo de último clic de Google Ads

 

  1. Modelo de primera interacción. Este modelo es justamente lo contrario al primero que hemos visto. En este caso se atribuye el 100% de la conversión al primer clic que hace el usuario en la conversión. Si el primero (última interacción) tenía poco sentido, este tiene aún menos, ya que en este caso no se tiene en cuenta todo lo demás que hace el usuario. Por así decirlo, en este modelo se piensa que la primera vez que entra en contacto el consumidor con nuestro eCommerce es decisivo para su conversión final. Para mi ese es un momento muy importante, pero para nada creo que sea el momento para atribuir la conversión final, ya que no tiene en cuenta el journey lógico de cualquier consumidor hoy día.

Modelo de primera interacción

Modelo de primera interacción

 

  1. Modelo lineal. Este modelo da el mismo peso a cualquier acción que se esté haciendo con el usuario para que llegue a la conversión. Desde mi punto de vista, utilizar este modelo y no utilizar ninguno es lo mismo, ya que no te arroja ninguna información que sea de valor para asignar cómo te están funcionando las campañas que realmente llevan a la conversión a tus clientes. Normalmente se utiliza para cuando una tienda online necesita mantener un contacto continuo con sus clientes, y más o menos tiene determinado que cada campaña influye de una manera muy similar en la conversión final. Si es tu caso utilízalo, pero ya te digo que desde mi punto de vista no es muy práctico.

Modelo lineal

Modelo lineal

 

  1. Modelo de deterioro del tiempo. Este modelo puede tener bastante sentido. Lo que hace es dar cada vez mayor peso a las acciones y contactos con la tienda online, a medida que se acercan a la conversión. Es decir, aquellas campañas que estén más alejadas en el tiempo a la conversión, menos valor tendrán. En Google Analytics, el tiempo predeterminado entre acción y acción es de 7 días. Esto quiere decir que un impacto que pase los 7 días de la conversión, tendrá la mitad de valor que uno que haya sido el día antes de la conversión. Estos días los podemos ajustar en el apartado de “Ventana al pasado”. Para saber qué tiempos poner, una buena idea es hacerlo en base al lapso de tiempo de los “Embudos multicanal”.

Modelo de deterioro en el tiempo

Modelo de deterioro en el tiempo

 

  1. Modelo según la posición. Este modelo es el que yo llamo, “ni para ti, ni para mi”. Este determina que tanto la primera interacción como la última son las más importantes en la misma proporción, pero además, no resta importancia a las interacciones que surgen entre ambas, pero a estas las atribuyen mucho menos valor. Este modelo puede tener su lógica, ¿verdad? Normalmente en una conversión, la primera interacción es básica, ya que cuando entras en el eCommercer por primera vez a través de una campaña, es porque realmente ha despertado tu interés. Esta primera interacción abarca la fase de awareness y consideración, y es fundamental para seguir recorriendo ese customer journey. La final, para mi, es también básica, ya que sin ella quizás no se llegara a convertir. Es cuando ya el cliente está en su fase de decisión, y esa última campaña dirigida a ese momento, es la que empuja a la venta final. Por supuesto, entre medias están otra serie de acciones que son fundamentales para dirigir a ese cliente potencial hacia esa fase de decisión, las cuales no tenemos que infravalorar. Aquí entra en juego el lead nurturing, el remarketing, etc, las cuales, sin ellas no podríamos llegar a la fase final de decisión. Sin embargo, es cierto que hay negocios en los que este modelo no se llega a ajustar tampoco a sus prioridades, ya que las fases intermedias son las que más importancia tienen en la venta de productos más racionados y de venta más a largo plazo.

Modelo según la posición

Modelo según la posición

 

  1. Modelo de atribución personalizado. Este tipo de modelos sólo están disponibles si disponemos de una herramienta de monitorización más potente, la cual nos permita definir en función de nuestra idiosincrasia el modelo de atribución exacto. Para saber cómo configurar y determinar qué modelo de atribución es el más adecuado a nuestras necesidades, lo ideal es comenzar trabajando con el modelo de deterioro en el tiempo. Este modelo nos irá dando información, la cual nos ayude a ir ajustando ese modelo de atribución más adaptado a nosotros.

 

Hay que tener en cuenta que crear un modelo de atribución para nuestro eCommerce es algo realmente complejo, el cual tendremos que estar tocando de vez en cuando, ya que necesita ajustarse en función de la experiencia con otros modelos y las estrategias y campañas que vayamos utilizando.

¿Te interesaría crear tus modelos de atribución para tu tienda online? Si quieres probar con ellos en Google Analytics, la ruta para llegar a ellos es esta: Administrar (icono de la rueda, abajo a la izquierda) > Vista > Y en Herramientas y elementos personales, Modelos de atribución. Para comenzar, tendrás que hacer clic en “+Modelo de atribución”.

En Artyco ayudamos a nuestros clientes a mejorar el conocimiento de lo que ocurre en su eCommerce, analizando su Data, creando Dashboards de Web Analytics y creando modelos de atribución adecuados para poder optimizar las campañas y la conversión en la tienda online. Un equipo de Business Intelligence ayuda a nuestros clientes a sacar provecho de todo esto y a crear modelos predictivos que hagan de tu tienda online una tienda mucho más eficiente. ¿Quieres aprovecharte tú también de ello? ¿Hablamos?

¿Quieres mejorar tu analítica web?

Te ayudamos a conocer al detalle lo que pasa en tu eCommerce y te añadimos modelos de atribución que te permitan optimizar tus campañas.

Cómo mejorar la conversión de tus campañas a través del Data Driven Marketing

Cómo mejorar la conversión de tus campañas a través del Data Driven Marketing

El Data Driven Marketing es una disciplina que se encarga de aprovechar los datos generados y almacenados por una empresa sobre sus clientes, potenciales y comportamientos, para poder tomar decisiones adecuadas y conducir de manera correcta las campañas futuras de marketing. ¿No sabes cómo aplicar el Data Driven Marketing en tu empresa? Aquí te contamos cómo hacerlo.

Si es la primera vez que escuchas Data Driven Marketing, o es un concepto que aún no tienes del todo claro, te recomiendo que antes de seguir con este post, eches un ojo a otro que escribí sobre Qué es el Data Driven Marketing, donde además de contártelo todo sobre esta disciplina, te doy seis razones por las que utilizarlo. Si ya lo conoces y lo que buscas es cómo sacarle provecho en tu empresa, sigue adelante. Esto que te voy a contar te interesa.

Seguro que te preguntas ¿por qué se habla ahora tanto de Data Driven Marketing? Hasta hace pocos años, no se podía o no se sabía aprovechar toda la información de la que disponía una empresa, ya que se carecía de herramientas que te ayudaran a acceder y recoger información de una manera eficaz y rápida, y que además, te permitieran realizar análisis de comportamiento. Poco a poco y según han ido evolucionando esas herramientas, se ha ido dando una mayor importancia al análisis y a la toma de decisiones basadas en datos, propiciando este entorno. Con esta evolución, hoy día y a través del Data Driven Marketing, podemos crear algoritmos predictivos capaces de analizar una gran cantidad de variables al mismo tiempo, las cuales nos ayuden en esa toma de decisiones. Si quieres saber más sobre ello, puedes echar un vistazo al post que escribí sobre Qué es un análisis predictivo y cómo utilizarlo en Marketing.

Como podrás suponer, esta disciplina, gracias a estos avances, puede hacer mucho por mejorar el rendimiento de tus campañas. ¿Quieres saber por dónde empezar? Sigue leyendo.

Cómo hacer campañas más eficaces a través del Data Driven Marketing

Cómo hacer Data Driven Marketing

Para poder poner en marcha un buen plan basado en el Data Driven Marketing, antes debemos de crear una estrategia respecto a ello. ¿Qué pasos debemos seguir para definir esta estrategia?

1. Recopilación de datos. Es fundamental que definamos cómo vamos a recopilar los datos generados por los usuarios, sean clientes o potenciales a través de las diferentes fuentes de información (base de datos, redes sociales, compras, comportamiento web, interacciones con el usuario…). Esta fase es crítica y debemos tener muy bien definidos qué datos queremos recopilar. Ten en cuenta que los datos de “no compra” son tan importantes como los de compra, ya que estos últimos pueden ayudarnos a comprender muchos comportamientos del cliente. Para esta fase se hace imprescindible disponer de una buena herramienta que te permita poder gestionar toda esta información de una manera eficaz, rápida y útil. Esta herramienta es un CRM.

2. Interpretación de datos. Lo primero que debes de tener en cuenta es que los datos que habrás recogido se dividen en estructurados y no estructurados. Los estructurados son aquellos datos que son fácilmente ordenables, como por ejemplo la edad, el sexo, etc. Los no estructurados son por ejemplo, los comentarios en redes sociales, el sentimiento de esos contenidos, etc. Todos estos datos necesitan de un procesamiento y una depuración para determinar si aportan valor o no para la toma de decisiones de la empresa. Gracias a estos datos y la interpretación de los mismos, podremos crear patrones de comportamiento en nuestros usuarios. En este apartado cobra especial importancia disponer de una persona especializada en business intelligence. Se que es complicado encontrar esta figura en la mayoría de las empresas, pero no te preocupes, puedes subcontratar los servicios de customer intelligence.

3. Dar valor a esos datos. El último paso es utilizar esa información y cuadros de mando generados por los analistas, para crear estrategias de marketing que sirvan para adelantarse a las necesidades de los usuarios.

Si nunca has utilizado correctamente un CRM y si no dispones de un analista en tu equipo, quizás estés pensando que esto del Data Driven Marketing es demasiado complejo para tu negocio. Pero si te pregunto que si estás dispuesto a multiplicar por 13 los resultados generados por tu equipo de marketing, ¿qué me contestarías?

En el año 2014, el Massachusetts Institut of Technology (MIT) publicó un caso de estudio – “Big Data-Driven Marketing: How machine learning outperforms marketers` gut feelings”, donde explica al detalle un experimento realizado con una empresa de telefonía. En este experimento se compararon los ratios de conversión obtenidos para una campaña realizada bajo los criterios del departamento de marketing, y otra en base a un modelo algorítmico con más de 350 variables de metadatos, provenientes de los hábitos de comportamiento de sus clientes y datos en los medios sociales.

El resultado fue evidente. Mientras que para la primera campaña la tasa de conversión fue de un 0,5%, en la segunda campaña, esta fue del 6,42%. Su resultado por tanto, fue hasta diez veces superior.

Ahora, ¿sigues pensando lo mismo? Seguro que en estos momentos estás pensando en cómo aplicar el Data Driven Marketing… Para ello tienes que comenzar por lo más sencillo. Te lo explico.

 

Cómo incorporar el Data Driven Marketing en tu empresa

Data Driven Marketing en la empresa

Si estás concienciado en que es mejor tomar decisiones y crear campañas en base a datos, frente a intuiciones, ya tienes la mitad del camino recorrido.

Lo segundo que debes hacer es reestructurar la organización, asegurándote que todos los departamentos de tu empresa colaboren entre sí compartiendo información. Aquí el departamento comercial es clave, ya que son los que están en contacto directo con los clientes y los potenciales, y quienes pueden nutrir de una información con más valor a la base de datos de tu empresa.

Lo siguiente que debes hacer, es conseguir integrar toda esa información en un mismo lugar, desde donde puedan acceder cualquier miembro de la compañía, y pueda al mismo tiempo, ser analizada en su conjunto. Para ello, se hace imprescindible un CRM que te permita no sólo registrar en un mismo lugar dicha información, sino además poder analizarla eficientemente.

A continuación, empieza a analizar. Depura la información menos relevante, y confirma aquellos insights que te son realmente útiles. Clasifica a tus clientes en función de su rentabilidad y centra tus esfuerzos en esos grupos.

Si te atreves con los servicios de ‘customer intelligence’, recibirás cantidad de análisis y conclusiones sobre lo que intenta decirte tu base de datos, y que tú no sabes leer. En base a esas conclusiones y análisis, podrás dirigir más certeramente tus estrategias de marketing y en definitiva, podrás aumentar el ROI de tus campañas.

¿Quieres aplicar el Data Driven Marketing a tu negocio?, pero ¿prefieres que te lo resuelva una empresa con un equipo experto y especializado? Contacta con nosotros, podemos hacer mucho por tu negocio.

¿Quieres hacer comunicaciones más personalizadas a tus clientes?

Diseñamos e implantamos soluciones CRM y Social CRM para que conozcas mejor tus clientes y puedas aumentar tu ROI

Cómo el Deep Learning puede ayudarte en tu estrategia online

Cómo el Deep Learning puede ayudarte en tu estrategia online

El Big Data y los algoritmos avanzados se han convertido en un gran aliado para el mundo del Marketing. Son numerosas las aplicaciones que los análisis de datos proporcionan a la hora de optimizar cada una de las acciones que realizamos para alcanzar nuestros objetivos de Marketing.

Muchas de las grandes marcas ya llevan un tiempo trabajando en análisis predictivos para maximizar cada euro de las partidas de sus presupuestos. En este contexto, vemos como las segmentaciones están cada vez más afinadas estratégicamente para impactar aquellos usuarios que tienen mayor probabilidad de compra o premiar aquellos que tienen más valor con el fin de aumentar su satisfacción.

En este sentido, es esencial tener un control exhaustivo sobre nuestras bases de datos de clientes y las interacciones que hacen con la marca para sacar mayor partido a los datos, para que nos revelen conclusiones de valor, con el fin actuar de la manera más eficiente con cada uno de ellos.

Pero, no hay que olvidar qué les interesa a nuestros usuarios más allá del comportamiento que presentan con nuestros productos o comunicaciones. Los consumidores cada vez tienen más poder sobre sus decisiones de compra y las de otros usuarios, son conscientes de que sus opiniones han tomado protagonismo y visibilidad en el entorno digital y las redes sociales son un factor crítico de influencia que afectan directamente sobre el comportamiento de nuestros clientes y potenciales.

Numerosas herramientas de Social Listening, son capaces de mostrarnos una panorámica sobre lo que los consumidores opinan sobre nuestras marcas y las de la competencia, rastreando las menciones que se comparten en el mundo online. Pero, en una Era en la que la imagen está cobrando cada vez más protagonismo y redes sociales como Instagram que cuenta con 400 millones de usuarios mensuales activos, con un total de 40 mil millones de fotos y 3,5 mil millones de fotos por día, es un tesoro que no muchos están aprovechando.

Con el Big Data en boca de todas las empresas, los negocios que tienen presencia online viven con la necesidad de tener cuantos más datos mejor, eso les resta capacidad y tiempo para programar y re-programar, entrando en juego el aprendizaje automático, es decir el “machine learning“.

Los gigantes de Internet han entrado de lleno en este mundo del “Machine Learning“, ofreciendo servicios en la nube para construir aplicaciones que aprenden a partir de los datos que ingieren. Hoy en día, este está al alcance de cualquier programador, el cual sólo tiene que supervisar qué está bien y qué está mal de lo que aprende de manera automática. La disciplina del aprendizaje automático está en plena ebullición gracias a su aplicación en el mundo del Big Data y el IoT, y por supuesto, el marketing online no escapa de ello. Sin embargo, podemos ir un paso más allá: el Deep Learning.

El Deep Learning, posiblemente sea el futuro del aprendizaje no supervisado, es decir, sin la necesidad de que haya un humano indicando qué está bien y qué está mal de lo aprendido. En este paradigma, los algoritmos son capaces de aprender sin intervención humana previa, sacando ellos mismos las conclusiones acerca de la semántica embebida en los datos.

El Deep Learning utiliza estructuras lógicas que se asemejan en mayor medida a la organización del sistema nervioso de los mamíferos, y que se compone de un número de niveles jerárquicos. En el nivel inicial de la jerarquía la red aprende algo simple y luego envía esta información al siguiente nivel. El siguiente nivel toma esta información sencilla, la combina, compone una información algo un poco más compleja, y se lo pasa al tercer nivel, y así sucesivamente.

Técnicas como el Deep Learning pueden ayudarnos, por ejemplo, a aplicar estudios innovadores de reconocimiento de imágenes automático en tiempo real, para realizar un seguimiento de marca, también en material visual y audiovisual. Sus posibilidades son numerosas, vamos a ver alguna de ellas en el campo del Marketing Online.

Deep Learning en el marketing digital

¿Qué puede aportar el Deep Learning en nuestra estrategia online?

El Deep Learning no deja de asombrar a los expertos, y sus aplicaciones son cada día más numerosas. Entre las principales aplicadas a lo que es el Marketing Digital, podemos destacar las siguientes:

  • Monitorizar en tiempo real las reacciones en los canales online durante el lanzamiento de productos.
  • Ayudarnos a orientar nuestros anuncios y predecir las preferencias de los clientes.
  • Predecir mejor la probabilidad de que el usuario haga clic en una llamada a la acción.
  • Conseguir recomendaciones de producto más precisas por cliente.
  • Conseguir anuncios de retargeting más personalizados.
  • Identificar y hacer seguimiento de los niveles de engagement de los clientes, sus opiniones y su actitud en diferentes canales online.

Quién sabe hacia dónde avanzará la aplicación de estos algoritmos avanzados en el mundo del Marketing. Lo que sí está claro es que debemos aprovechar todo el potencial que nos ofrece en la actualidad para sacar mayor rendimiento y rentabilidad a nuestras estrategias online.

En Artyco disponemos de un departamento de customer intelligence centrado en aportar inteligencia al marketing de nuestros clientes. ¿Quieres conocer qué podemos hacer por tu negocio?

¿Quieres hacer marketing inteligente?

Te ayudamos a conocer el comportamiento de tus clientes, a fidelizarlos y a predecir sus ventas maximizando tus resultados.

Qué es un análisis predictivo y cómo utilizarlo en marketing

Qué es un análisis predictivo y cómo utilizarlo en marketing

Como respuesta al titular de este post, podríamos decir que el análisis predictivo nos permite a través de los datos, conocer por adelantado el comportamiento de los consumidores en referencia al objeto de estudio. Parece lógico ¿verdad? Sin embargo ese no es su único fin. El fin último del análisis predictivo no es tanto predecir, que es importante, sino conocer cómo podemos influir con acciones y qué probabilidades tienen que ser determinantes ante ese suceso predicho. ¿Estás confuso? Sigue leyendo este post, creo que te puede descubrir algunas cosas interesantes.

Para ponernos en situación, vamos a definir primero qué es un análisis predictivo. El análisis predictivo forma parte de lo que se llama analítica avanzada, la cual busca a través de análisis estadísticos, predecir sucesos futuros estudiando los sucesos pasados. Los profesionales del Big Data suelen referirse a ello como “bolas de cristal”, ya que al igual que hacen las videntes, con dichos modelos se busca predecir qué ocurrirá. Sin embargo, como ya hemos adelantado antes, esta metáfora no es del todo válida, ya que lo que buscamos en marketing es que no se cumplan los pronósticos de nuestros modelos de análisis predictivos, si no nos interesa, utilizando acciones que nos ayuden a obtener los resultados que sí queremos. Te lo explico mejor.

Para construir una inteligencia de negocio, es necesario recoger el mayor número de datos posible y saber diferenciar el dato que aporta valor sobre la paja. Los datos que nos podemos encontrar los dividimos en: datos estructurados y no estructurados.

Datos estructurados son aquellos que se pueden ordenar y tratar perfectamente, algunos ejemplos de datos estructurados más comunes son: la edad, el género, el estado civil, nivel de ingresos, etc. Datos no estructurados son aquellos que no se pueden ordenar y clasificar, sin una estructura clara, como por ejemplo, los contenidos en las redes sociales, incluso elementos que se pueden derivar de sus contenidos, como por ejemplo el sentimiento de sus publicaciones.

De este modo, y a través de los datos necesarios, podremos averiguar y anticipar resultados y comportamientos, que nos permitan ser proactivos. Aquí está la diferencia de valor: en ser proactivos. Esto es una gran ventaja, ya que podremos tomar decisiones de actuación basadas en datos y no en suposiciones.

La analítica prescriptiva va un poco más allá y nos sugiere acciones que podemos poner en marcha, a raíz de las predicciones y sus implicaciones. Aquí es donde tiene especial valor para el marketing esta ciencia. De nada nos sirve conocer que va a ocurrir algo que no interesa a la empresa, si paralelamente no estudiamos qué habría que hacer para que ese comportamiento cambie y sea el que nos interesa.

Por tanto, podríamos decir que el análisis predictivo no tiene como objeto último conocer qué puede pasar, si no crear modelos de análisis predictivos que se construyan usando técnicas matemáticas y de inteligencia artificial, permitiendo inferir cómo se comportará en el futuro una variable (predecida) en función de una serie de variables predictoras.

Ya tenemos claro qué es y qué no es, ahora vamos al grano: cuál es el proceso, qué ventajas tiene y dónde podemos aplicarlo.

 

El proceso de la analítica predictiva.

Procesos puesta en marcha análisis predictivos

Como todo proceso, este está compuesto por diferentes fases.

1. Definición del proyecto. Aquí debes establecer cuáles son tus objetivos, es decir, para qué vas a hacer esto. Además, debes determinar las fuentes de datos que vas a utilizar, las decisiones, los resultados y el alcance que esperas obtener como resultado de tus esfuerzos.

2. Recogida de datos. Este es el momento en el que obtenemos los datos. Una vez los hemos recogido, tratamos la información y la transformamos en una estructura comprensible para así poder usarla posteriormente.

3. Tratamiento de datos. Consiste en el proceso de inspeccionar, limpiar, transformar y clasificar los datos con el objetivo de descubrir información útil, que te permitirá llegar a conclusiones.

4. Análisis estadístico. Esto te permitirá a través de estadísticas descriptivas conocer los primeros resultados y conclusiones, además de identificar probabilidades de comportamiento.

5. Modelación predictiva. Esta fase te da la oportunidad de crear, de forma automática, modelos predictivos.

6. Puesta en marcha de los modelos predictivos. Es la última fase, en la que puedes desplegar los resultados analíticos de las decisiones de cada día, construyendo un proceso para obtener resultados e informes que nos permitan llegar a la automatización de decisiones.

 

Ventajas y aplicaciones de la analítica predictiva.

Ventajas analítica predictiva

Puestos en situación y una vez sabemos qué es la analítica predictiva y cuál es su proceso, imagino que te harás una idea de sus ventajas y dónde aplicarla. Estas son las que se me ocurren a mí.

Principales ventajas de la analítica predictiva:

1. Te ayuda a prevenir la rotación, detectando señales tempranas de insatisfacción. De este modo, puedes crear segmentos de clientes en función del riesgo mayor o menor, de pérdida. De este modo, podrás aplicar acciones correctoras oportunas, aumentando con ello la retención y los ingresos.

2. Te permite maximizar el valor del ciclo de vida del cliente (CLV). Con la analítica predictiva podrás identificar segmentos de clientes con alto valor y así planificar acciones de marketing estableciendo las oportunas estrategias de coss /up selling más adecuadas.

3. Identificar nuevos segmentos de clientes con alto potencial. ¿Qué significa esto? Si sabes quiénes de tus clientes tienen la capacidad de aumentar sus compras, dirígete a ellos con acciones oportunas y aumenta los ingresos.

4. Planificar adecuadamente tus campañas, dándole el enfoque idóneo para cada uno de los segmentos. Analizando todos los datos de que dispones, como patrones de compra, comportamiento, navegación web, interacciones en redes sociales, etc, podrás definir cuáles son los mejores momentos y canales a través de los que comunicarte con tus clientes.

5. Poder predecir el rendimiento de cada campaña en función del canal. Gracias a los análisis predictivos puedes analizar los hábitos de compra y comportamiento online, ayudándote a predecir el rendimiento de la campaña en cada canal.

6. Crear recomendaciones de producto (cross/up selling) en función del histórico de compras de cada cliente. Se puede utilizar el conocimiento histórico de compras por cliente e identificar productos o servicios con alto potencial de venta por cliente.

7. Predecir momentos valle y así poder efectuar campañas para reducir esa bajada de ventas. Gracias a estos análisis, predecimos cuáles son los momentos en los que hay una bajada de ventas y así poder actuar sobre ello por adelantado, reduciendo al máximo posible esa circunstancia.

8. Reducir la tasa de abandono de clientes o de la cesta de la compra. Sigue la línea del primer punto, donde hablábamos de prevenir la rotación, detectando señales tempranas de insatisfacción. Identificando qué clientes tienen más probabilidades de abandonar la compra, puedes intervenir sobre ellos evitando que esto suceda.

9. Identificar probabilidad de compra. Crear segmentos de clientes en función de su probabilidad de compra y así comunicarte con ellos de manera diferente en función de esta.

 

Veamos ahora algunas de sus aplicaciones:

  1. Analítica de la gestión de las relaciones con los clientes (CRM).

Estos análisis tienen una importante actuación a lo largo del ciclo de vida de los clientes. Desde el momento de la adquisición y crecimiento de la relación, hasta incluso el momento de la retención y la reconquista. En este sentido, los análisis predictivos nos permitirán conseguir los objetivos de CRM en cuanto a campañas de marketing, ventas y atención al cliente.

  1. En el ámbito sanitario.

Estos análisis pueden utilizarse de manera muy eficiente en el sector de la sanidad, para determinar los pacientes que están en riesgo de desarrollar, en base a sus datos, algunas enfermedades como asma, diabetes y otras patologías. También puede ser utilizado para ver el resultado de un nuevo tratamiento.

  1. Analítica de recopilación de datos.

Las aplicaciones de análisis predictivo, además se pueden emplear para la optimización de la asignación de recursos de datos, identificando bien a las agencias de recolección, las estrategias de contacto y las acciones legales, para incrementar la recuperación de la información y reducir los costes de la recogida de datos.

  1. Detección del fraude.

Aunque parezca raro, la analítica predictiva, tiene una importante utilidad en la detección de transacciones fraudulentas, tanto online como offline, robos de identidades y reclamaciones de seguros falsas.

  1. Gestión del riesgo.

Las aplicaciones de analítica predictiva también pueden usarse para predecir la mejor cartera para maximizar el retorno en el modelo de valoración de precios de los activos financieros, conocidos como CAPM o Capital Assets Pricing Model.

 

Interesante, ¿verdad? No tengo duda de que si has llegado hasta aquí es porque te interesa mucho poder poner en práctica en tu negocio estos modelos predictivos. Normalmente, este tipo de trabajo lo realiza un departamento de Business Intelligence el cual no muchas empresas se pueden permitir. En Artyco disponemos de un gran equipo de expertos en crear ventajas y oportunidades a empresas, a través del Customer Intelligence y la analítica predictiva. Si quieres que te ayudemos, no dudes en ponerte en contacto con nosotros.

¿Quieres predecir tus ventas?

Te ayudamos a conocer el comportamiento de tus clientes, a fidelizarlos y a predecir sus ventas maximizando tus resultados.

Descargar entrada en PDF

[contact-form-7 404 "Not Found"]

¿Qué es el Data Driven Marketing?

¿Qué es el Data Driven Marketing?

Según un estudio realizado por IBM, el 80% de los responsables de marketing toman sus decisiones siguiendo su instinto y basándose en su experiencia. En la actualidad vivimos en la sociedad del dato, donde el Big Data y la capacidad de las empresas de ordenar ese exceso de información y poder utilizarlo para tomar decisiones, es una realidad. Precisamente en este sentido, el Data Driven Marketing puede ayudar a tu empresa.

Todos los directores de Marketing saben que las decisiones hay que tomarlas en base a datos y modelos predictivos, sin embargo, el día a día o la imposibilidad de poder gestionar esos datos y conseguir esos análisis predictivos, hace que la mayoría acabe utilizando el recurso de la experiencia y la intuición. Todos caemos en el error de pensar que lo que nosotros solemos hacer es lo que hace la mayoría de las personas, sin embargo, esa opinión está terriblemente sesgada. Si no quieres caer en este error, echa un vistazo al Data Driven Marketing.

 

El Data Driven Marketing, ¿qué es?

que es data driven marketing

El Data Driven Marketing lo podríamos definir como el conjunto de conocimientos y decisiones que emergen del análisis de datos provenientes de fuentes internas y externas, acerca de los consumidores. Es decir, el uso correcto de la información de clientes y potenciales de cara a conocerles mejor, y poder comunicarte con ellos de manera más personalizada. Se trata, en definitiva, de convertir el dato en conocimiento y el conocimiento en rentabilidad.

El problema hasta hoy día, es que las empresas disponen de una gran cantidad de información, la cual sigue aumentando gracias a los medios sociales, la navegación web, etc. Más y más información, la cual muy pocas empresas logran aprovechar.

Hasta ahora, se carecía de herramientas capaces de acceder y recoger información precisa e individualizada acerca de los patrones de comportamiento de los usuarios, así como gran parte de la información recopilada por las empresas ni siquiera se utilizaba para la toma de decisiones, por el hecho de que no se sabe cómo analizarla. Otro de los principales problemas era que buena parte de los responsables de marketing y ventas tienen el hábito adquirido de tomar las decisiones basadas en su instinto y experiencia, tal y como adelantábamos, en lugar de utilizar los datos y evidencias contrastadas.

Con el avance de las nuevas tecnologías, el Data Driven Marketing a través de plataformas destinadas para ello, ha comenzado a cobrar importancia en las empresas que quieren utilizar los datos de que disponen. Las cuatro necesidades básicas que han incitado al despegue definitivo del Data Driven son estas:

1. La búsqueda continua por maximizar el retorno de la inversión. Conociendo la respuesta exacta de nuestro target a nuestros impactos, podremos ser mucho más eficaces y reducir así el coste de inversión.

2. Conseguir una mayor visibilidad. Si conocemos mejor qué resultados nos aporta la publicidad más visual, como el display, podremos perderle el miedo a invertir en ella, al conocer exactamente qué papel juega en nuestra inversión.

3. El poder alinear los objetivos de la empresa con las necesidades reales del público digital. Con Internet, el usuario controla el proceso de compra. La empresa debería intentar encajar su oferta comercial y no justo lo contrario, hacer que el cliente encaje con lo que la empresa intenta vender.

4. Aumentar el volumen de datos que podemos obtener de los canales online. Es importante ser eficaces no sólo en la recogida de datos, sino también en la gestión y tratamiento de ese Big Data. De esa manera, crear modelos que incluyan todas las variables necesarias para sacar provecho a esa información. Siempre disponiendo de un personal preparado.

5. Girar definitivamente hacia una visión customer-centric. El Data Driven Marketing es la máxima expresión del enfoque hacia el usuario. La empresa no debe perder nunca esa visión de colocar al cliente en el centro de su vida. Para ello necesita conocerle, y para conocerle necesita información.

 

Data Driven Marketing y Machine Learning

Con Internet, el volumen de información que manejamos sobre nuestros clientes, crece cada año de forma exponencial. Resulta absurdo que intentemos tomar decisiones basadas en esos datos, si no podemos asimilarlos de manera racional.

Para poder hacer frente a tal cantidad de información, necesitamos de los algoritmos en los análisis de datos. Gracias a la tecnología que aplica este tipo de algoritmos, podemos sacar conclusiones y correlacionar la información de una manera más precisa y acertada de lo que podríamos hacer por nuestros propios medios. Utilizando Machine Learning, podremos obtener información que nos ayude a saber cuál de las decisiones a tomar, tiene más probabilidades de generar un impacto positivo en nuestras campañas de marketing.

Según una encuesta de Adweek de 2015, en la cual preguntaba a los responsables de marketing, para qué pensaban utilizar estos datos, las respuestas fueron:

  • 66% para la utilización de contenido personalizado.
  • 40% para aumentar sus habilidades en la gestión y tratamiento del Big Data.
  • 36% para trabajar en la retención y fidelización de clientes.
  • 36% para hacer más eficientes los canales digitales.

Seguro que te encuentras entre al menos una de las opciones…

 

Qué beneficios tiene el Data Driven Marketing

Como habrás podido suponer hasta el momento, es una técnica muy potente, con la cual puedes principalmente:

  1. Reducir el tiempo en la toma de decisiones estratégicas y tácticas.
  2. Te ayuda a probar las campañas de marketing con resultados y métricas en tiempo real que permiten adoptar medidas correctivas de cara a su mejora.
  3. Te permite personalizar los mensajes y ofertas para mejorar la experiencia de cliente y aumentar así su fidelización.
  4. Consigues predecir el comportamiento de los consumidores y te permite responder de forma inmediata a las acciones de los consumidores.
  5. Mejora la selección del target.
  6. Optimiza la integración de canales cruzados.

 

Qué necesitas para aplicar el Data Driven Marketing

como empezar con el data driven marketing

Como estamos viendo, el Data Driven Marketing nos ayudará a crear estrategias digitales basadas en datos. Para ello necesitamos:

1. Un modelo de datos que sea capaz de analizar y registrar gran cantidad de datos (big data).

2. Un equipo preparado para la gestión de las necesidades (análisis de la información, redacción de copy, creación de piezas publicitarias, actualización de contenidos, …).

3. Una prueba de concepto sobre una parte manejable de la información para determinar el nivel de confiabilidad del sistema.

 

Parece sencillo, pero lo cierto es que la mayoría de las empresas hispanohablantes están muy a la cola en la implantación de este tipo de tecnología. ¿Estás aplicando con éxito el Data Driven Marketing en tu empresa? Cuéntanos cómo te va, nos encanta escuchar casos de éxito.

🙂

¿Quieres predecir tus ventas?

Te ayudamos a conocer el comportamiento de tus clientes, a fidelizarlos y a predecir sus compras maximizando tus resultados.