91 640 41 50 hola@artyco.com
Qué son los MLOps

Qué son los MLOps

Qué son los MLOps

El Machine Learning Operations o MLOps se refiere al uso de aprendizaje automático por parte de los equipos de desarrollo/operaciones (DevOps) en las organizaciones de la manera más ágil y eficaz posible. El MLOps es una de las nuevas tendencias en Big Data, que se basa principalmente en ofrecer un conjunto de mejores prácticas para que las empresas ejecuten la IA con éxito. El MLOps es un campo que podríamos denominar como novedoso, sobre todo porque la inteligencia artificial en el ámbito empresarial no se ha empezado a utilizar hasta hace poco y no se ha necesitado la optimización de sus procesos hasta ahora. ¿Quieres saber qué es?, ¿por qué debes de empezar a aplicarla?, ¿qué debes de tener en cuenta y cuál es su proceso? Aquí te lo cuento todo.

Llevamos algunos años experimentando un crecimiento importante en todo lo relacionado con la recopilación de datos para su uso analítico. Este, cada vez más, se está aplicando al campo de la inteligencia artificial. Esto conlleva un cambio en los procesos tecnológicos y en las arquitecturas empresariales, ya que son necesarias nuevas tecnologías para abordar los retos que trae esta nueva tendencia.

El crecimiento del volumen de datos y la necesidad de utilizar nuevas tecnologías para el desarrollo de modelos analíticos está haciendo que existan ineficiencias en la gestión del ciclo de vida del dato y de los modelos analíticos, así como en el desarrollo de aplicaciones relacionadas, como por ejemplo la dependencia que tienen los equipos de analytics de los de data para que les pasen los datos necesarios; la falta de capacidad y arquitectura empresarial para abordar todo el ciclo de vida del dato; la dificultad de encontrar el dato apropiado ante tal repositorio; y la baja calidad de los datos por norma general, entre muchas otras.

Para poder agilizar el desarrollo de aplicaciones que sirvan para solventar estos problemas, es necesario trabajar sobre tres pilares básicos que son:

  • Los datos. Cómo los gestionamos y gobernamos.
  • Los modelos analíticos. El desarrollo, gobierno y gestión de estos modelos.
  • Las aplicaciones. El modo tradicional de implementar funcionalidades dentro de las arquitecturas empresariales.

MLOps se presenta como un enfoque importantísimo para solucionar todos estos problemas que te he mencionado anteriormente, además de ser una manera de ayudar en el desarrollo de aplicaciones de inteligencia artificial ágil y que aporten valor al negocio de manera rápida, siendo las bases de una compañía Data & AI Driven.

Vamos a ver qué es exactamente MLOps.

 

Qué es MLOps.

Qué es MLOps

Tras el ‘boom’ de la IA en el año 2012, al ganar un concurso un investigador que logró el reconocimiento de imágenes mediante el machine learning, esta disciplina se extendió rápidamente. En la actualidad, su uso es mucho más generalizado, llegando la inteligencia artificial a nuestro día a día, como el traducir al instante una página web, enrutar automáticamente las llamadas del servicio de atención al cliente de una empresa, e incluso, ayudar a leer las radiografías en los hospitales, entre otras muchas cosas más.

La gran utilidad que tiene el ML en cualquier campo de la vida y los negocios va a hacer que se convierta en algo tan común como una aplicación de software. Es por eso, que será necesario que su ejecución sea lo más simple posible.

Hace una década, como ya te adelanté, DevOps se creó como una forma de que pudieran trabajar de manera conjunta los desarrolladores de software (los Devs) y los equipos de operaciones de IT (los Ops). Ahora, lo que se incorpora es el machine learning y por tanto, un nuevo equipo de trabajo: los data scientists.

MLOps permite la colaboración y comunicación entre todos los implicados en el ciclo de vida del desarrollo de analítica avanzada. Aquí se incluiría desde los usuarios de negocio, hasta los Data Scientists y las personas de operaciones de IT necesarias para el desarrollo de los modelos analíticos, provocando la agilización del proceso completo.

Estos, seleccionan conjuntos de datos y crean modelos de inteligencia artificial que los analizan, para luego ejecutarlos a través de los modelos creados, de manera disciplinada y automatizada.

 

 

Ciclo MLOPs

MLOps combina machine learning con desarrollo de aplicaciones y operaciones – Fuente: Neil Analytics

 

El MLOps origina, sobre todo, un enfoque útil para la creación y la calidad de las soluciones de inteligencia artificial y machine learning. Al adoptar un enfoque de MLOps, los data scientists y los ingenieros de machine learning pueden colaborar y aumentar el ritmo de desarrollo y producción de modelos, mediante la implementación de prácticas de integración continuas, con la monitorización, la validación y la gobernanza adecuados de los modelos de ML.

Ya tienes una idea de qué es, pero seguro que te preguntarás por qué son necesarios. Pues no te muevas que te lo explico.

 

Por qué son necesarios los MLOps.

Por qué son necesarios los MLOps

Muy sencillo, porque llevar a cabo un proceso de machine learning conlleva muchos pasos muy complejos, como la ingesta de datos, su preparación, el entrenamiento de modelos y su ajuste e implementación, la supervisión de estos modelos, su explicabilidad y mucho más. Además, tienen que coordinarse especialistas en ciencia de datos e ingenieros de ML. Por último, todo ello requiere de un severo rigor operativo para mantener todos estos procesos sincronizados y trabajando a la par. MLOps abarca todo este ciclo con el fin de que el proyecto llegue a buen puerto lo más rápidamente posible.

Puedo resumirte por qué debes desarrollar esta práctica a través de estos dos motivos:

  1. El número de modelos de analítica avanzada está en continuo crecimiento. Desde hace unos años la mayoría de las compañías han empezado a desarrollar modelos cuyo retorno de inversión se ha demostrado, lo que ha llevado a que cada vez se quieran aplicar técnicas avanzadas de análisis de datos a más ámbitos de negocio. Esto conlleva a que sea necesario desarrollar cada vez más modelos.
  2. Los modelos, una vez puestos en producción, suelen perder precisión. Esto es debido a que se han entrenado con un conjunto de datos que representaban el estado de la realidad pasada. Según va evolucionando ésta, los datos van cambiando lo que hace que el acierto del modelo vaya reduciéndose. Esta situación se soluciona reentrenando el modelo con nuevos datos.

Estos dos motivos hacen que sea totalmente necesario agilizar el ciclo de vida de los modelos analíticos, el cual va desde la concepción del modelo a través de la toma de requisitos de negocio, hasta el despliegue y monitorización de este modelo en producción. Vamos ahora a ver cuáles son sus principales beneficios.

 

Cuáles son los beneficios de MLOps.

Beneficios MLOps

Los principales beneficios son:

  • Eficiencia. MLOps permite lograr un desarrollo de modelos de ML más rápido, de mayor calidad y una implementación y producción más ágiles.
  • Escalabilidad. Se pueden supervisar, controlar, administrar y monitorizar miles de modelos para la integración, la entrega y la implementación continua. Específicamente, MLOps brinda reproducibilidad de las canalizaciones de ML, lo que permite una colaboración más estrecha entre los equipos de datos, reduce los conflictos con los desarrolladores e IT, y acelera la velocidad de lanzamiento.
  • Reducción de riesgos durante la validación de modelos (reducir la inversión en tiempo y dinero en modelos que no van a ser útiles).
  • Constante evolución de los modelos. A través de la monitorización y los datos, se consigue que los modelos evolucionen de forma continua, mejorando la eficacia de los sistemas de IA.

Sin embargo, debes de tener en cuenta una serie de cosas antes de ponerte a usar MLOps:

  • Debes de cuidar mucho la calidad de tus datos, es decir, tener muy presente de dónde vienen, su calidad, si son fiables, etc.
  • Entender que al cabo del tiempo los modelos van perdiendo calidad y se degradan.
  • La localidad de los datos en el momento que se están entrenando.

Como has visto, el desarrollo de modelos analíticos requiere muchas tareas y dependencias que añaden complejidad y retraso. El objetivo de MLOps no es otro que eliminar todas esas complejidades, con el fin de que el Data Scientist pueda trabajar de forma más eficiente, aportando valor real al negocio en un periodo de tiempo más corto. Todo ello, a través de automatizaciones de procesos y/o simplemente, organizando los procesos de manera más ágil.

Las automatizaciones están ayudando a cambiar los procesos empresariales, y en algo tan complejo como es la inteligencia artificial, estas son la clave para que dicha IA sea realmente útil. La mejor opción; apoyarse en profesionales con experiencia y compañías que te acompañen en el complicado camino que supone el machine learning y la inteligencia artificial. ¿Hablamos?

Emilio Fernández Lastra

Chief Marketing Officer

“Después de la hipoteca, el inbound marketing es la mejor
herramienta para asegurar una relación a largo plazo”

¿Te ha parecido interesante lo que has leído?

En artyco podemos ayudarte a conseguir tus objetivos

¿Hablamos?

Si, quiero

+34 916 404 150

© Artyco comunicación y servicios - Todos los derechos reservados

© Artyco comunicación y servicios - Todos los derechos reservados

Cómo afectará la IA a la industria global, en el 2022

Cómo afectará la IA a la industria global, en el 2022

Cómo afectará la IA a la industria global, en el 2022

El 2022 está siendo un año de gran incertidumbre, y como tal será un momento para que algunas empresas prosperen a causa de ello. A diferencia de otros momentos iguales, en este, la implantación correcta de la inteligencia artificial será un elemento diferenciador que ayudará a decidir cuáles de esas empresas sacarán partido de este momento. En este post te contaré dónde centrarán las empresas sus esfuerzos de IA a medida que analicen big data y busquen nuevas oportunidades de ingresos, con el objetivo de sacar partido a este momento de incertidumbre. ¿Te apuntas? Vamos a ello. 

Los problemas en la cadena de suministro derivados de la pandemia global están afectando a la producción de todo tipo de industrias. Desde automóviles, a aparatos electrónicos, pasando por muebles o incluso el papel higiénico.  

Al mismo tiempo, los precios mundiales de los alimentos han saltado a su nivel más alto en más de una década, a medida que la escasez de trabajadores, el cierre de fábricas y los altos precios de los productos básicos destrozan los planes incluso en las operaciones logísticas y de previsión más sofisticadas. 

Ante esta situación, muchas empresas se están empezando a mover buscando alternativas relacionadas con la tecnología, que les haga más competitivos, así como que les ayude a prever tendencias coyunturales y optimizar sus procesos de fabricación. 

Según una encuesta de PWC que se realizó a mitad de 2021 entre más de 1.000 empresas al nivel global, en nueve sectores, entre ellos la banca, la salud, o la energía, encontró que el 86% de ellas estaban ya preparadas para hacer de la IA una “tecnología convencional”. 

En función de lo que salió de esa encuesta, así como de otros estudios relacionados, podemos determinar, cuáles pueden ser las principales predicciones para el 2022 sobre Inteligencia Artificial en la industria global. Vamos a verlas. 

 

7 principales predicciones sobre IA en la industria global, para este 2022.

Hay muchas. Unas en desarrollo, otras ya implantadas y contrastadas, pero todas aún sin ser generales en su uso a nivel internacional. Sólo unas pocas empresas se están aprovechando hoy día de las oportunidades que les ofrece esta tecnología. 

Aquí te presento algunas de las que más se hablan, y siempre en función de varios informes y opiniones de expertos al nivel internacional. Vamos a ver cuáles son: 

7 predicciones sobre la IA en la industria global en el 2022

 

#1. IA conversacional.

El año pasado la Inteligencia artificial conversacional fue utilizada mayormente en el campo de los videojuegos y el entretenimiento. Esta se utilizó sobre todo, para hacer que los videojuegos fueran más inmersivos permitiendo la interacción en tiempo real con los diferentes personajes.

Este 2022, es el año de utilizarla también para el ámbito laboral. Estas nuevas herramientas de inteligencia artificial conversacional nos permitirán trabajar de manera más eficiente y efectiva, utilizando el procesamiento del lenguaje natural. La síntesis de voz está lista para volverse tan emotiva y persuasiva como la voz humana en este 2022, lo que va a ayudar a industrias como el comercio minorista, la banca y la atención médica a comprender mejor y servir mejor a sus clientes.

Yendo más allá del procesamiento del lenguaje natural, las empresas que utilizan tanto el habla como el texto para interactuar con otras empresas y con sus clientes, emplearán la IA a medida que avanzan en ella, para comprender el contexto o el sentimiento en lo que se está diciendo. ¿El cliente está frustrado? ¿Tu jefe está siendo sarcástico? A pesar de que en el lenguaje español esto es especialmente complejo, se acelerará la adopción de herramientas como OpenAI Github copilot, que ayuda a los programadores a ser más efectivos en su trabajo relacionado con esto.

 

#2. Automóviles programables.

Todo automóvil perdía valor en el mismo instante en el que salía del concesionario, sin embargo, muy pronto esto dejará de suceder. Veremos a más fabricantes de automóviles moverse para reinventar la experiencia de conducción mediante la creación de arquitecturas definidas por software con capacidad para admitir nuevas aplicaciones y servicios a través de actualizaciones inalámbricas automáticas. Los vehículos mejorarán y serán más seguros con el tiempo.

La IA ayudará a desestresar la conducción diaria, por ejemplo, hasta el centro de trabajo. Esta inteligencia artificial actuará como un asistente personal, mejorando el viaje en el vehículo, aportando una experiencia más segura y agradable.

Los ocupantes del vehículo tendrán acceso a servicios inteligentes que siempre están activos, permitiéndoles utilizar IA conversacional en tiempo real para recomendaciones, alertas, controles de vehículos y mucho más.

Además, la inteligencia artificial y el análisis de datos ayudarán a entrenar y validar los vehículos autónomos para una amplia gama de condiciones de conducción, brindando seguridad diaria diseñada para el largo plazo.

 

#3. Estándares emergentes para 3D enfocados en el Metaverso.

Estos avances irán dirigidos a la descripción de mundos virtuales como el del Metaverso. Los estándares como Universal Scene Description (USD) y glTF evolucionarán rápidamente para satisfacer las necesidades fundamentales de la Web3 y los gemelos digitales.

La tasa de innovación en IA se ha acelerado durante toda esta década, pero la IA no puede avanzar sin grandes cantidades de datos diversos y de alta calidad. Hoy en día, los datos capturados del mundo real y etiquetados por humanos son insuficientes tanto en términos de calidad como de diversidad, para saltar al siguiente nivel de inteligencia artificial. En 2022, veremos una explosión de datos sintéticos generados a partir de mundos virtuales (Si quieres saber un poco más sobre cómo será el Metaverso y su aplicación en el área del marketing, te recomiendo nuestro post “Qué es el Metaverso y cómo influirá en las marcas”).

 

#4. AI4Science. La IA facilitará el descubrimiento de nuevos fármacos.

En los últimos 25 años, la industria farmacéutica ha pasado de desarrollar fármacos a partir de fuentes naturales (por ejemplo, plantas) a realizar cribados a gran escala con moléculas sintetizadas químicamente. El machine learning o aprendizaje automático permite a los científicos determinar qué fármacos potenciales merece la pena evaluar en el laboratorio, y la forma más eficaz de sintetizarlos, generando, según dicen los expertos, hasta un millón de fármacos nuevos.

La IA conducirá a avances en el descubrimiento de nuevos medicamentos y tratamientos, y revolucionará la atención médica. 

La categoría “medicamentos, cáncer, molecular, descubrimiento de fármacos” recibió la mayor cantidad de inversión privada en IA en 2020, con más de USD 13.800 millones, 4,5 veces más que en 2019, por poner un ejemplo.

La industria de dispositivos médicos tiene una oportunidad innovadora, habilitada por la inteligencia artificial, para minimizar y reducir costos, automatizar y aumentar la accesibilidad, y ofrecer innovación continuamente durante la vida útil del producto. Las empresas de dispositivos médicos evolucionarán desde la entrega de hardware hasta la provisión de sistemas de software como servicio (SaaS) que se pueden actualizar de forma remota para mantener los dispositivos utilizables después de la implementación.

La IA se integrará profundamente con HPC (computación de alto rendimiento) y hará posibles las simulaciones y modelos científicos a una escala y fidelidad sin precedentes en áreas como los modelos meteorológicos y climáticos.

 

#5. IA perimetral en procesos de fabricación.

En este caso, la tecnología 5G puede suponer nuevas oportunidades para la computación perimetral. La IA-on-5G desbloqueará casos en los que la IA perimetral podría aportar importantes soluciones para la industria. Esto abriría el camino a lo que se denomina como “Industria 4.0”: automatización de plantas, robots de fábrica, monitoreo e inspección, además de facilitar sistemas autónomos en carreteras de peaje o en aplicaciones de telemetría de vehículos. Del mismo modo, supondrá un avance en lo relacionado con espacios inteligentes en el retail, ciudades, cadenas de suministro, incluso lo que se llama la fábrica inteligente. Estas fábricas usan cámaras y otros sensores para realizar una inspección y un mantenimiento predictivo. Sin embargo, la detección es solo el primer paso. Una vez detectado, se deben tomar medidas. Esto requiere una conexión entre la aplicación de IA que hace la inferencia y los sistemas de monitoreo y control, u OT, que administran las líneas de ensamblaje, los brazos robóticos o las máquinas de recoger y colocar.

 

#6. IA para acelerar el servicio en negocios como el de la hostelería, el retail y la logística.

Los clientes cada vez demandan más un servicio más rápido. Por ello, precisamente los restaurantes de comida rápida han sido los primeros en implantar la IA para la toma de pedidos automatizada. Eso es posible gracias a los avances en la comprensión del lenguaje natural y el habla, combinados con los sistemas de recomendación. De este modo, los ‘fast food’ implementarán la toma de pedidos automatizada para acelerar los tiempos de entrega y mejorar las recomendaciones.

En los supermercados y las grandes tiendas, los minoristas aumentarán el uso de análisis de video inteligente para crear cajas automatizadas y compras autónomas o sin cajero.

La logística es otro de los puntos en los que la IA tendrá especial importancia. Y es que, si tenemos en cuenta que el punto fuerte de la inteligencia artificial está en simplificar los problemas increíblemente complejos, como es el caso de la cadena de suministros, en este aspecto va a tener mucho que decir. Tras la falta de aprovisionamiento que estamos viviendo actualmente (ver post “La crisis del desabastecimiento: La atención al cliente como solución”), optimizar la cadena de suministros, disponiendo del producto y realizando envíos mucho más rápidos, va a ser un área crítica para desarrollar con la IA, en el sector logístico.

La IA puede permitir pronósticos más frecuentes y precisos, asegurando que el producto correcto esté en la tienda correcta en el momento correcto.

Del mismo modo, la IA y el Data Science, ayudarán en todo lo relacionado con el almacenamiento (montacargas autónomos, automatización del empaquetado…) y la entrega de última milla (simulaciones de rutas).

 

#7. Descongelación de los Data Lakes como elementos clave en la analítica de datos.

Los data lakes han supuesto desde el inicio del trabajo del Big Data, un elemento fundamental, sin embargo, han estado, por así decirlo, congelados, debido a que están aislados y desacoplados del machine learning. Sin embargo, estos son muy efectivos, como he comentado, en el procesamiento de datos a gran escala (ver “Data Warehouse y Data Lakes. Qué son y para qué sirven”).

En este 2022 se prevé que los Data Lakes se modernicen definitivamente, a través de canalizaciones de datos de un extremo a otro debido a tres puntos de inflexión: infraestructura centralizada, la agilidad de las aplicaciones basadas en Kubernetes y el mejor almacenamiento adecuado a la tarea de su clase.

 

Durante la pandemia, a medida que los confinamientos se convirtieron en la nueva normalidad, las empresas y los consumidores se ‘digitalizaron’ cada vez más, proporcionando y comprando más bienes y servicios online. Este hecho trajo consigo un incremento exponencial de datos sobre esos consumidores, abriendo la puerta a un nuevo uso de esos datos que, junto con la IA, pueden abrir una nueva dimensión y convertirse en los impulsores de múltiples aplicaciones en todos los sectores.

Al nivel interno empresarial, la inteligencia artificial influirá sobre todo en la automatización de procesos, evitando que los empleados dediquen demasiado tiempo a trabajos repetitivos, pudiéndose centrar en tareas más creativas, por poner un ejemplo. Esto mejorará la productividad.

Ventajas de la IA

Llevamos años hablando de ella, pero quizás sea ahora en el 2022 cuando realmente empecemos a ver de una manera más evidente su aplicación real. La explosión de la Inteligencia Artificial no ha hecho más que empezar.

Emilio Fernández Lastra

Chief Marketing Officer

“Después de la hipoteca, el inbound marketing es la mejor
herramienta para asegurar una relación a largo plazo”

¿Te ha parecido interesante lo que has leído?

En artyco podemos ayudarte a conseguir tus objetivos

¿Hablamos?

Si, quiero

+34 916 404 150

© Artyco comunicación y servicios - Todos los derechos reservados

© Artyco comunicación y servicios - Todos los derechos reservados

Ejemplos de caso de uso del Machine Learning en el Marketing Digital.

Ejemplos de caso de uso del Machine Learning en el Marketing Digital.

Ejemplos de caso de uso del Machine Learning en el Marketing Digital.

Hace décadas, cuando alguien oía hablar de la inteligencia artificial, pensaba automáticamente en robots que invadían el mundo y sometían a las personas a su yugo. Sin embargo, hoy día, todos tenemos interiorizado lo positivo que es en la vida cotidiana. Gracias a ella, podemos comunicarnos con una web a través de un chatbot, o recibir promociones que se ajustan a nuestros hobbies e intereses, entre otras muchas cosas más. No obstante, para quienes ha supuesto un avance importante, ha sido para los responsables de marketing, quienes a través del machine learning en el marketing digital, tienen la oportunidad de tomar decisiones cruciales, rápidamente basadas en big data. De esto es de lo que te voy a hablar en este post. Vamos a verlo.

El aprendizaje automático o machine learning (ML) es una clase de métodos de inteligencia artificial que se caracterizan por no brindar soluciones directas a problemas, sino sistemas de entrenamiento para aplicar soluciones.

Podemos encontrarnos con una gran cantidad de métodos de aprendizaje automático, pero se suelen dividir en dos grupos principales: los que aprenden con un “maestro” y los que no.

En el caso de los primeros, es una persona la que proporciona a la máquina datos iniciales en forma de pares de situación-solución. A continuación, el sistema de aprendizaje automático analiza estos pares y aprende a clasificar situaciones en función de soluciones conocidas. Un caso muy sencillo y que nos es útil a todos, es por ejemplo cuando el sistema aprende cuándo marcar como spam ciertos mensajes que nos llegan a nuestro buzón de correo electrónico.

En el otro caso, es decir, cuando aprende sin maestro, la máquina recibe toda la información de una manera desordenada de situaciones sin soluciones, y aprende a clasificar esas situaciones en base a signos similares o diferentes, sin guía humana.

En el campo que nos interesa, el del marketing digital, se utiliza el machine learning sobre todo para encontrar patrones en las actividades de los usuarios en un sitio web. Esto, ayuda a poder predecir el comportamiento futuro de esos usuarios y a optimizar rápidamente las campañas publicitarias.

Por qué es eficaz el Machine Learning en el Marketing Digital.

Ejemplos de uso de Machine Learning en el Marketing Digital.

El objetivo del aprendizaje automático en el marketing no es otro que ayudar a tomar decisiones rápidas, basadas en grandes cantidades de datos (Big Data).

El proceso de trabajo al respecto es el siguiente: los especialistas en ML crean una hipótesis, la prueban, la evalúan y la analizan. Aunque parezca sencillo, este trabajo es largo y complicado, y a veces, los resultados son incorrectos, porque la información está cambiando cada segundo.

Por ejemplo, para evaluar 20 campañas publicitarias considerando 10 parámetros de comportamiento para cinco segmentos diferentes, un especialista necesitará aproximadamente cuatro horas. Si dicho análisis se lleva a cabo todos los días, el especialista dedicará precisamente la mitad de su tiempo a evaluar la calidad de las campañas. Cuando se usa el aprendizaje automático, la evaluación toma minutos y la cantidad de segmentos y parámetros de comportamiento es ilimitada.

Gracias al Machine Learning, podemos responder más rápido a los cambios en la calidad del tráfico generado por campañas. El resultado, es que los responsables de marketing pueden dedicar más tiempo a crear hipótesis, en lugar de a realizar acciones rutinarias.

Otro factor importante a tener en cuenta es la rapidez, pero por el hecho de que los datos caducan, y a medida que estos se vuelven obsoletos, el valor de los resultados que hemos obtenido disminuyen.

Una persona no puede procesar los volúmenes de información que los sistemas analíticos recopilan un cuestión de minutos. A través de esos sistemas de ML, se pueden procesar cientos de solicitudes, organizarlas y proporcionar resultados en forma de una respuesta inmediata a una pregunta.

¿Qué beneficios tiene el Machine Learning para el trabajo diario en el Marketing Digital? Muy sencillo:

  • Mejora la calidad del análisis de datos.
  • Te permite analizar más datos en menos tiempo.
  • El sistema se adapta a cambios y nuevos datos.
  • Te permite automatizar los procesos de marketing y evitar el trabajo de rutina.
  • Hace todo lo anterior rápidamente.

Ejemplos de uso de Machine Learning en el Marketing Digital.

Por qué es eficaz el Machine Learning en el Marketing Digital.

Existen una gran variedad de usos del aprendizaje automático en el campo del marketing digital, sin embargo, creo que los más interesantes o destacables son estos que te expongo a continuación:

1. Sistemas de recomendación.

Son los ya por todos conocidos, en los que se ofrece a los clientes los productos que les interesan en ese momento.

Un sistema de recomendación predice cuáles son los productos que es más probable que compre un cliente. Con dicha información, genera notificaciones push y por correo electrónico, así como bloques de “productos recomendados” y “productos similares” en la web.

El resultado de ello es que los usuarios ven ofertas personalizadas, lo que aumenta la probabilidad de que realicen la compra.

Para conseguir esto, se suelen utilizar algoritmos K-means clustering.

2. Segmentación por previsión

El objetivo de las segmentaciones no es otro que poder utilizar el presupuesto publicitario solo en aquellos usuarios objetivo que merecen la pena o que tienen más probabilidades de comprar nuestro producto o servicio.

Las segmentaciones más utilizadas son:

  • Creación de segmentos sobre los que orientar la publicidad, de tal modo que se muestre la publicidad a aquellos grupos con el mismo conjunto de atributos.
  • Segmentaciones que se activan mostrando anuncios a los usuarios, después de que realicen una determinada acción, como, por ejemplo, ver un producto o agregar un artículo al carrito de la compra.
  • Segmentación predictiva, en la que se muestran los anuncios a los usuarios en función de la probabilidad de que realicen la compra.

La principal diferencia entre estos tipos de orientación es que la orientación predictiva utiliza todas las combinaciones posibles de decenas o cientos de parámetros de usuario con todos los valores posibles. Todos los demás tipos de orientación se basan en un número limitado de parámetros con ciertos rangos de valores.

Lo que predice la segmentación de previsión es la probabilidad de que un usuario realice una compra en “n” días.

El resultado de utilizar este tipo segmentaciones es que logras mostrar la publicidad a un público más específico, lo que aumenta la eficacia de las campañas.

Los algoritmos más comunes para conseguir esto son: XGBoost , CATBoost, Decision Tree (si hay pocos datos disponibles o son evidentes pocos patrones).

3. Previsión de LTV

Los métodos más conocidos para calcular el valor de vida de un cliente, o LTV , se basan en el conocimiento del beneficio total de un cliente y el tiempo durante el cual el cliente ha estado interactuando con la empresa. Sin embargo, muchas veces es interesante conocer el LTV antes de que este se vaya, para así poder crear estrategias comerciales en función del resultado para cada cliente. En este caso, la única solución es predecir el LTV en función de los datos disponibles y agrupar por segmentos.

Una vez que tienes los LTV previstos por cliente, y has creado los diferentes segmentos en función de este, se cargan los segmentos en el sistema que se utilice, y se automatizan los envíos de comunicaciones en función de la tasa de abandono de cada uno, con el objetivo de evitar esas fugas y aumentar al máximo el valor de cada cliente.

Una vez has lanzado las campañas, se deberían de cargar los segmentos en Google Analytics utilizándolos para analizar la efectividad de las campañas publicitarias basadas en el LTV previsto.

El resultado de aplicar este tipo de técnica es que puedes determinar el presupuesto publicitario por usuario en función del LTV, mejorando así la efectividad de las campañas.

Los algoritmos comunes para este propósito suelen ser: XGBoost , SVM , Random Forest o Regresión Logística.

4. Previsión de la tasa de abandono.

El concepto de abandono o salida se refiere a los clientes que han dejado la empresa y por tanto, la pérdida de ingresos asociada. Por lo general, se expresa en términos porcentuales o monetarios.

La previsión de la tasa de abandono permite responder a la intención de un cliente de abandonar su producto o servicio antes de que realmente lo haga. Lo cual es tremendamente útil para cualquier empresa, ya que puedes definir acciones para evitar que eso suceda.

La manera de trabajarlo sería, crear diferentes segmentos en función de la probabilidad de abandono, y planificar y automatizar una serie de acciones para cada uno de esos segmentos.

Gracias a esto, lo que consigues es mejorar la retención de clientes y por tanto, los beneficios de tu empresa.

Los algoritmos más comunes para este propósito son: SVM, Regresión logística y otros algoritmos de clasificación.

Como puedes ver, el machine learning no es algo tan complejo como pueda parecer al leer su nombre, estando bastante bien bajado a la realidad de cualquier empresa. Este está dirigido a obtener unas mejoras cuantificables y unos beneficios en cuanto a eficiencia de presupuestos, acciones de marketing y resultados.

En artyco, trabajamos cada uno de estos puntos, logrando aumentar la rentabilidad de nuestros clientes día a día. ¿Quieres que lo hagamos contigo?

Emilio Fernández Lastra

Chief Marketing Officer

“Después de la hipoteca, el inbound marketing es la mejor
herramienta para asegurar una relación a largo plazo”

¿Te ha parecido interesante lo que has leído?

En artyco podemos ayudarte a conseguir tus objetivos

¿Hablamos?

Si, quiero

+34 916 404 150

© Artyco comunicación y servicios - Todos los derechos reservados

© Artyco comunicación y servicios - Todos los derechos reservados

Cómo determinar el Pricing a través de la Inteligencia Artificial

Cómo determinar el Pricing a través de la Inteligencia Artificial

Cómo determinar el Pricing a través de la Inteligencia Artificial

La optimización de los precios es una tarea de enorme trascendencia para cualquier empresa, ya que, mediante este, además de hacer competitiva su oferta comercial, va a incidir directamente en los beneficios de la compañía, a través del incremento o reducción del margen. El correcto establecimiento de estos precios, así como su variación a lo largo del tiempo sabiendo tener en cuenta múltiples variables, puede ser determinante para la empresa. Y una excelente manera de hacerlo eficazmente es a través de la Inteligencia Artificial. ¿Quieres saber de qué manera? Te lo cuento.

Como bien sabes, la Inteligencia Artificial o IA (en inglés artificial intelligence – AI) es llevar la inteligencia humana a una máquina, la cual es capaz de tener en cuenta muchas más variables y de una manera más rápida y eficaz, que un ser humano, para desempeñar una acción, realizar una hipótesis o sacar una conclusión, entre otras muchas cosas.

Uno de los campos en los que mayor actividad está teniendo la IA, es en el marketing, en el que empresas como Netflix, Amazon o L`Oreal están liderando en sus respectivas industrias, el uso de esta inteligencia, para sacar mayores beneficios en su cuenta de resultados.

En este aspecto, si quieres profundizar en ello, te recomiendo que eches un vistazo a este post que escribí hace tiempo sobre “Usos y aplicaciones de la Inteligencia Artificial en el Marketing” en el que te hablo de su uso en el Data Driven Marketing, la automatización de procesos, la interacción personalizada, la creación de contenidos o la publicidad programática.

Sin embargo, otro de los campos en los que más se está sacando provecho a la IA, es en la disciplina del customer intelligence, en el que se están consiguiendo grandes avances y beneficios descubriendo la “personalidad de compra” de un consumidor, gracias al volumen de datos que disponemos, los cuales trabajados correctamente con una metodología de Data Management, aplicamos una vez preparados, el Deep Learning. Este proceso, nos está permitiendo, entre otras cosas, encontrar productos a través de imágenes y no palabras clave, identificar logotipos en imágenes dentro de las diferentes plataformas sociales, o predecir las preferencias de los usuarios en cualquier eCommerce. – “Cómo hacer Customer Intelligence con Inteligencia Artificial”.

Como puedes imaginar, el Pricing es un área en el que la Inteligencia Artificial aporta múltiples ventajas. Este, más que muchos otros, se nutre de datos, muchos datos… los cuales le sirven para alimentar los diferentes escenarios de negocio. Estos datos, unidos a una tecnología que ayude a generar esa inteligencia artificial, hacen posible lo que se conoce como “nueva gestión de precios”.

Vamos a ver de qué manera podemos hacer Pricing con inteligencia artificial. El proceso para llegar a este, sería el siguiente. Vamos a ello.

 

Paso 1: Acceso y uso de las fuentes de datos

Acceso a datos para determinar Pricing

Lo primero que debe hacer cualquier empresa es definir y poner en actualidad el acceso a los datos y su integración.

Toda empresa tiene acceso a datos de diversas fuentes, tales como el ERP, el CRM, Facebook, Google… y a través de múltiples formas como pueden ser un archivo, una API o una base de datos. Toda esta información se puede almacenar en la nube, a través de plataformas como AWS o Azure. Sin embargo, ante tal cantidad de datos, tipos y plataformas, no debemos perder el foco de cuáles de estos datos necesitamos para poder optimizar nuestros precios.

Con esta filosofía, podríamos decir que los principales datos que necesitaremos analizar son:

  1. Datos transaccionales. Este es quizás uno de los datos más importantes para el pricing, ya que va directo a la cuenta de resultados y la rentabilidad de la empresa.
  2. Datos relacionados con el stock. Qué productos tenemos y cuál es la disponibilidad de estos, es fundamental para determinar el precio final.
  3. La demanda. Monitorizando y obteniendo información sobre el interés de los consumidores en adquirir nuestro producto, es decir, la posibilidad de conocer la demanda, nos ayudará a crear una política de pricing dinámico, el cual varíe en función de la demanda detectada previamente. Sectores como la aviación comercial, tienen muy desarrollada este tipo de políticas.
  4. El contexto. Este aspecto tiene que ver con cualquier evento, promoción o suceso que pueda marcar un cambio en las tendencias habituales de demanda de la marca. Un factor de contexto significativo ha sido por ejemplo la crisis del COVID-19, pero también puede ser un mundial de fútbol si eres un vendedor de ropa deportiva o el Black Friday si eres de electrónica de consumo.
  5. La estrategia. La determinación del precio, se verá enormemente influenciada por la estrategia que tenga la compañía en cuanto a posicionamiento, objetivos, política comercial, etc.

Una vez tengamos claro cuáles de esos datos pueden influir en nuestro producto y cómo podemos acceder a ellos, limpiarlos homogeneizarlos y almacenarlos, llegaría el momento de tratarlos, ¿cómo?

 

Paso 2. Creación de modelos avanzados

Analítica avanzada para Pricing

Una vez que ya tenemos establecidas las bases sobre las que trabajar el Pricing, es hora de aplicarle una capa de inteligencia de negocio y algoritmos de machine learning. En establecimiento de precios, los más destacables son:

  1. Segmentación. Gracias a la segmentación, lo que hacemos es clusterizar o trocear las múltiples opciones que nos dan los datos, como por ejemplo las relacionadas con el contexto (si está lloviendo, si son las vacaciones de verano, si es Navidad…); relacionados con el canal en el que se vende (Amazon, El Corte Inglés, tienda online propia…); en función del perfil sociodemográfico o patrón de compra del consumidor; en función del dispositivo favorito (móvil, ordenador, teléfono…); la geolocalización… y muchos más. Con Machine learning aplicado a esto mismo, nos puede permitir asignar unos precios u otros de manera inteligente, aumentando la conversión, al ser más a medida del público al que nos estamos dirigiendo, el momento y el medio.
  2. Predicción. Esta es clave para llegar a realizar un ajuste de los precios en tiempo real, o lo que se llama “precios dinámicos”. A través de modelos de regresión, por ejemplo, logramos predecir la relación entre unidades vendidas y precio, intensidad promocional, tipo de producto, perfil del cliente… Amazon por ejemplo, utiliza un algoritmo para crear sus precios dinámicos, los cuales varían en función del stock y unos competidores concretos. Según los expertos, Amazon es capaz de cambiar 2,5 millones de precios al día, ajustándolos a sus necesidades.
  3. Optimización. Esta es otra de las funcionalidades, por llamarlo de alguna manera, para aplicar el Pricing a través de modelos avanzados, es decir, optimizar maximizando la rentabilidad, teniendo en cuenta los patrones de navegación, otras transacciones, el momento actual… La alemana Blue Yonder, fundada por el profesor Michael Feindt, excientífico del CERN e inventor de una metodología única para resolver problemas complejos de optimización llamada NeuroBayes, ha conseguido generar millones de modelos de optimización en tiempo real, lo que a su vez, le ha permitido al distribuidor Morrisons evitar roturas de producto y adaptarse inmediatamente a la crisis del COVID-19.

Sin embargo, no todo se puede quedar en la capa analítica, ya que estamos hablando de negocios y como tales, debe existir una capa que trate precisamente este aspecto.

 

3. Prescripciones para el negocio

Predicción de negocio a través del Pricing

El éxito de poder hacer un correcto Pricing a través de la Inteligencia Artificial, como hemos visto, pasa por los datos, la tecnología, y como no, a través del conocimiento del negocio.

El negocio debe ser el punto de partida para saber hacia donde tenemos que ir, y el de llegada. Entre medias, está todo lo expuesto anteriormente.

En este punto, ya final, la IA debe ayudar a través de prescripciones, en los siguientes ámbitos:

  1. Fijación final del precio. A través de la integración de datos y de modelos y soluciones, la IA puede determinar en tiempo real los precios de los productos, catálogos, a la vez que aporta una coherencia respecto a los precios de otros países, otras familias de productos, etc.
  2. Fijación de descuentos y rebajas. La Inteligencia artificial puede ayudarnos a determinar cuándo poner en promoción un producto, cuándo establecer un período de rebajas y qué precio adoptar.
  3. Portfolio y mix de ventas. Una de las importantes funciones que tiene la IA en el pricing, está relacionada con la variación de precio de un producto, para que este impacte sobre otros productos de la familia, maximizando la rentabilidad de la categoría general de esos productos. Empresas como Coca-Cola han abierto un área nueva dedicada a la Gestión del Crecimiento de Ingresos, la cual está poniendo en marcha este tipo de prácticas.

 

Como has podido ver, la determinación de precios de manera automática e inteligente, a través de datos, algoritmos y tecnología es posible. Sólo es necesario conectar, por ejemplo,  los servicios de comercio electrónico más populares (Google Analytics, Magento, Prestashop, Shopify y otros), así como otras fuentes de datos internas (ERP y CRM de la empresa) y externas, y, a través de un núcleo de aprendizaje profundo (machine learning) que analiza tanto datos internos y externos, como precios fijos y estacionales, averiguaremos las causas que están originando cambios en los precios de un determinado sector, ajustándolos de forma automática y sin necesidad de intervención humana.

La estrategia de Pricing, no obstante, puede y debe ser supervisada por personas de forma manual. No obstante, el precio que propone la IA ayuda a fijar los precios, ya que además de aportar valor a los clientes, busca la mayor rentabilidad para la empresa.

¿Estás buscando automatizar procesos a través de machine learning? En artyco podemos ayudarte.

Emilio Fernández Lastra

Chief Marketing Officer

“Después de la hipoteca, el inbound marketing es la mejor
herramienta para asegurar una relación a largo plazo”

¿Te ha parecido interesante lo que has leído?

En artyco podemos ayudarte a conseguir tus objetivos

¿Hablamos?

Si, quiero

+34 916 404 150

© Artyco comunicación y servicios - Todos los derechos reservados

© Artyco comunicación y servicios - Todos los derechos reservados

Cómo el machine learning está detrás de las cosas más cotidianas

Cómo el machine learning está detrás de las cosas más cotidianas

Hace unas semanas compartíamos a través de nuestras redes sociales lo contentos que estábamos porque nuestras compañeras del departamento de Customer Intelligence, Lorena López y Lorena Rodríguez, participaron como ponentes en el curso de la UCM: Matemáticas para el mundo y para la sociedad. Durante su intervención, presentaron la aplicación de las Redes Bayesianas en los análisis de grandes cantidades de datos y, además, tuvieron la oportunidad de formar parte de una mesa redonda, donde explicaron los servicios del departamento y su funcionamiento.

Os lo resumimos en los siguientes párrafos:

Primera parte. Redes Bayesianas

Debido a la necesidad de tomar decisiones rápidamente en un mundo que está en continua transformación, es fundamental disponer de herramientas que nos ayuden a extraer el valor real de los datos que reside en la información que podamos obtener de ellos. Información que nos ayude a mejorar nuestra comprensión de los fenómenos que nos rodean. Se trata de interpretar grandes cantidades de datos y encontrar relaciones o patrones. Para ello, harán falta técnicas de aprendizaje automático, Machine Learning, a partir de las cuales seremos capaces de aprender reglas a partir de los datos.

Nuestra compañera Lorena López Valdivia junto con su tutora de Doctorado Paloma Maín Yaque proponen las Redes Bayesianas (RBs) como método para la realización de este análisis, como tuvieron ocasión de explicar en los recientes Cursos de Verano de El Escorial.

¿Qué son las Redes Bayesianas?

Las RBs son un modelo de representación de conocimiento. Modelos que describen las relaciones de dependencia/independencia entre las variables, expresando además de forma numérica la fuerza de dichas relaciones.

Lo que hace que su uso sea verdaderamente atractivo es el hecho de utilizar una representación gráfica para la explicación de la información. A parte de su habilidad de organizar un problema de una forma sencilla y secuencial a través del conjunto de variables y de las relaciones de dependencia existente entre ellas. Abordan dos problemas importantes como son la incertidumbre y la complejidad permitiéndonos aprender sobre las relaciones de dependencia y causalidad ya mencionadas, así como evaluar todas las historias posibles. Con este modelo, además, vamos a poder predecir o estimar valores de interés en situaciones o casos aún no observados.

 

Formalmente, una RB se define como un grafo acíclico dirigido (DAG) donde los nodos representan variables aleatorias que pueden ser continuas o discretas y los arcos representan las relaciones de dependencia directa entre las variables.  redes-bayesianas
Ejemplo de Red Bayesiana Nodos/Variables = {A, B, C, D, E, F, G, H, I}
Arcos = La unión entre cada nodo.

En definitiva, una red puede considerarse como una representación gráfica compacta de una evolución de todas las posibles historias relacionadas con un escenario. Por tanto, la estructura de la red nos da información sobre las dependencias probabilísticas entre las variables pero también sobre las independencias condicionadas de una variable (o conjunto de variables) dada otra u otras variables.

De esta manera, destacamos que las RBs son una herramienta innovadora que nos posibilita, entre otras cosas:

  • Diseñar el valor del ciclo de vida del cliente
  • Prevenir el riesgo de abandono de los clientes
  • Segmentar a los clientes
  • Construir una relación sólida con el consumidor

Y en definitiva tomar mejores decisiones.

 

Segunda parte. Mesa redonda «Machine learning y las matemáticas que hay detrás»

Durante la segunda parte de la jornada se realizó una mesa redonda dónde junto con la representación de Artyco (Lorena López Valdivia y Lorena Rodríguez Chamorro), estuvieron Paloma Maín Yaque y Javier Yáñez Gestoso, ambos profesores titulares en la Facultad de Ciencias Matemáticas de la Universidad Complutense de Madrid y Lucas García Rodríguez que actualmente trabaja en Mathworks desarrollando algoritmos de identificación de imágenes.

En ella dimos a conocer quiénes somos, cuáles son nuestros servicios y hacia dónde queremos dirigirnos, poniendo así en antecedentes a los alumnos para posteriormente detallar cómo desde Artyco integramos el Machine Learning en el entorno del Marketing. Cómo, con tanto flujo de información y fuentes de datos tan diversas resulta necesario disponer de una buena capacidad de análisis, así como formación en Matemáticas/Estadística para desarrollar las distintas técnicas que nos brinda el Machine Learning, con las que obtenemos ese conocimiento a partir del cual, somos capaces de medir de forma más efectiva nuestras campañas, haciéndolas más rentables, optimizar la atención de los clientes, mejorar la adquisición de los mismos y su conversión mediante el uso de la segmentación, crear nuevas oportunidades, anticiparnos al comportamiento del cliente… nos reporta un sinfín de beneficios, haciendo mención especial a la mejora en la toma de decisiones.

Se les explicó como los conocimientos que están adquiriendo en la Universidad pueden ser llevados a la práctica, y en un ámbito aparentemente tan distinto como puede ser el Marketing, en el que se hace indispensable tener un buen análisis de los datos para una correcta gestión y un buen enfoque de cada proyecto, y por lo tanto, el marketing se nutre de resultados y análisis matemáticos.

Mencionamos diversos casos reales dónde se han utilizado distintas técnicas de Machine Learning cómo, por ejemplo, la ya mencionada Redes Bayesianas, y otros procedimientos tales como, Algoritmos de agrupamiento, Árboles de decisión, Reglas de asociación, Series Temporales, aplicadas a diferentes estudios, como son: Segmentación de Clientes, Probabilidad de compra, Predicción de Ventas, Análisis del Comportamiento del Cliente, entre otros.

Finalmente, los cinco integrantes de la mesa redonda tuvimos la ocasión de valorar la importancia de las matemáticas para el Mundo y para la Sociedad, así como resolver las cuestiones que a lo largo de la jornada fueron planteadas.

 

Para concluir, nos gustaría reflejar lo enriquecedor que ha sido poder ser partícipes de esta jornada, tanto a nivel profesional como personal. Agradecer a la Universidad la oportunidad de dar a conocer la investigación que estamos realizando a través del Doctorado sobre las Redes Bayesianas cómo técnica de apoyo a la toma decisiones, acción que cada vez se hace más difícil por el desbordamiento de información y que en Artyco estamos aplicando en diversos proyectos, proporcionándonos tan buenos resultados.

Dedicamos una parte a conversar sobre cómo las matemáticas han evolucionado en el tiempo y cómo este hecho ha provocado a la Sociedad a seguir evolucionando, adaptándose a los continuos cambios, pudiendo comprobar como el machine learning está detrás de las cosas más cotidianas.

Por último, no podíamos irnos sin transmitir el auge actual del perfil técnico, Matemáticos/Estadísticos y lo importante que es actualmente disponer dentro de la organización de estos perfiles capaces de explotar la gran cantidad de información que generamos diariamente y convertirla en conocimiento.

¿Quieres predecir tus ventas?

Te ayudamos a conocer el comportamiento de tus clientes, a fidelizarlos y a predecir sus compras maximizando tus resultados.