Soluciones de Customer Intelligence | Artyco

Customer Intelligence

Extraemos la información relevante, la analizamos y sacamos conclusiones,
para que tomes decisiones en base a los datos, no en suposiciones.

Dispones de una gran cantidad de información sobre tus clientes, almacenada en tu CRM, pero más allá de lanzar comunicaciones, no sabes cómo sacarla partido. En Artyco disponemos de un equipo especializado en Customer Intelligence, el cual te ayudará a sacar provecho a esos datos, enriqueciendo la información que ya dispones, utilizando técnicas de análisis predictivo, y en definitiva, ayudando a crear relaciones más fluidas y fuertes entre el cliente y la empresa.

¿Qué podemos hacer?

barra-250

  • Obtener un modelo analítico.
  • Extraer conocimiento de los datos.
  • Clasificar mejor a los clientes por su valor actual y futuro.
  • Medir el resultado de las acciones.
  • Afinar y optimizar la estrategia de contacto.
  • Predecir compra e identificar leads.
  • Reconocer oportunidades.
  • Estudiar comportamientos similares para anticiparse.
  • Aplicar técnicas de Retención de clientes.
  • Perfeccionar la estrategia de negocio.

Identifica oportunidades con Customer analytics

Te analizamos las campañas, identificamos y sacamos los Kpi`s más adecuados en función de tus objetivos, te creamos unos dashboards para que puedas ver los resultados, y te creamos un reporting con las conclusiones.

Optimiza tus campañas con Customer Value

El Customer Value te permite crear segmentaciones y clusters de tus clientes y potenciales, crear modelos de adquisión, de up selling y cross selling, y obtener ratios fundamentales como el CLV, RFM, Crurn…

Construye tu estrategia de Social CRM con Social Customer Intelligence

Análisis de sentimiento, análisis predictivo, next product, recommendation, machine learning… son algunas de las cosas con las que podemos ayudarte si te interesa sacarle mayor partido a las acciones que estás realizando en las redes sociales.

¿Te gustaría que aplicáramos Customer Intelligence en tu negocio?

Nuestro equipo de Customer Intelligence utiliza una Plataforma de BI flexible, segura y escalable, para ofrecer a cada cliente lo que necesite en función del volumen o tipo de información, de la complejidad de los procesos de análisis o de la necesidad para trabajar en tiempo real.

Colaborativa, con funciones de autoservicio para el usuario final, multi-dispositivo, haciendo hincapié en la rapidez de la obtención de los resultados, con integración de distintas fuentes de datos, ya sean estructurados o no estructurados, con gran capacidad analítica, en Real Time y con un alto grado de personalización.

Gracias a la plataforma de BI de Microsoft, con la que trabajamos, el Big Data se convierte en Small Data, siendo accesible para cualquier tipo de empresa. Con esta plataforma y con herramientas de minería de datos, podemos realizar complejos análisis predictivos y aplicarlos con rapidez al negocio, optimizando procesos y maximizando resultados.

¿Quieres ver qué hacemos de customer intelligence para el Grupo Mahou San Miguel?

Últimos posts de Customer Intelligence

barra-250

Qué es 1st Party Data y qué ventajas aporta a tu estrategia de marketing

Qué es 1st Party Data y qué ventajas aporta a tu estrategia de marketing

First, second y third Party Data. Seguro que has oído hablar de cada una de ellas, pero ¿cuál es más importante para tu empresa? La Data puede venir de múltiples canales, así como en función de qué información sea, tener diferente influencia sobre tu estrategia. En este post, te cuento qué es el First Party Data, su diferencia con las otras dos y qué ventajas aporta a tu estrategia de marketing para convertirte en una Data-Driven-Marketing Company. ¿Te interesa? Vamos a por ello.

Se considera First Party Data a aquellos datos que la empresa obtiene de primera mano, es decir, aquella información que recopila a través de sus propias fuentes, como su página web, las redes sociales, el CRM, su servicio de contact center…

Esta información, generalmente incluye datos sobre los gustos de tus clientes, comportamiento con tu marca y con tu empresa en el entorno online, entre otros muchos. Estos son usuarios que en alguna ocasión han dejado sus datos a la marca para recibir algún tipo de información, pudiendo rastrear desde entonces la empresa, cuál es su comportamiento con ella, así como otras muchas cosas más.

La principal ventaja que tienen estos datos de primera parte, es que son gratuitos para la empresa, ya que no tiene que pagar a un tercero para obtenerlos.

Ahora que ya sabes que es el 1st Party Data, vamos a por las otras dos.

 

Qué son el Second y el Third Party Data.

2nd Party Data y 3rd Party Data

Una vez conocemos qué es el First Party Data, vamos a entender qué son el Second y el Third Party Data.

El 2nd Party Data o datos de segunda mano, es toda aquella información que es obtenida mediante intercambio con otra empresa. Normalmente, este intercambio de información suelen realizarla empresas complementarias, las cuales han llegado previamente a un acuerdo de intercambio para favorecer ambos negocios.

Por ejemplo, una web de ropa para recién nacidos podría compartir información con otra que vende productos de limpieza y cuidado de bebés.

Este tipo de información es un complemento perfecto para la información de primera mano o First Party Data, ya que te ayuda a ampliar tu audiencia, saliendo de la información que recoges por tus medios a través de usuarios y clientes que ya te conocen, enfocándote a nuevos consumidores, quienes te resultaría más complicado alcanzar de otra manera.

Si ves interesante este tipo de Data, debes de tener en cuenta la nueva normativa sobre la GDPR o RGPD (si no la conoces muy bien, te dejo este post sobre “7 Tips para que tu CRM cumpla con éxito la GDPR”) la cual indica que la única manera de poder compartir información sobre tus usuarios con terceros, es si el usuario ha expresado de manera activa su consentimiento a la empresa. Como te imaginarás, tras esto, es complicado encontrar buena información de segunda mano en Europa.

La 3rd Party Data, por el contrario, es toda aquella información obtenida a través de proveedores de datos externos. La principal ventaja que tienen estos datos, es que puedes adquirirlos a gran escala y ya segmentados, normalizados y testados. A través de ellos puedes conseguir una amplia cobertura en relación a tu público objetivo, pero ten en cuenta que tu competencia también tiene fácil acceso a ellos, habiéndolos utilizado ya probablemente. Si estos datos no disponen de “un tiempo de barbecho” entre campaña y campaña del mismo sector o afín, es probable que su eficacia no sea la esperada, bajando considerablemente la conversión.

Si quieres saber un poco más sobre este tipo de datos, y cómo se regulan en España, te recomiendo echar un vistazo a La Guía Legal Tratamiento de Datos de Terceros del IAB.

 

Cómo sacarle partido a tu First Party Data.

Cómo sacar partido al First Party Data

Tal y como ya sabes, el First Party Data o datos de primera mano, son aquellos que obtienes tú como empresa a través de tus canales de comunicación con los clientes, y los cuales recoges en un DMP o un Data Warehouse.

Tras la evolución del Marketing Digital de los últimos años, los datos se han convertido en uno de los principales activos de cualquier empresa, siendo uno de los objetivos de aquellas más punteras, convertirse en Data Driven Marketing Company, es decir, una empresa que toma sus decisiones de marketing en base a los datos que va recogiendo de sus clientes.

El uso de Internet, así como las compras online, hasta hoy nunca habían sido tan elevadas. Este hecho ha impulsado, junto con las nuevas tecnologías y el IoT, la adquisición de datos relevantes sobre el comportamiento de los consumidores. Para poder sacarle el mayor de los partidos a estos datos de primera mano, te recomiendo que hagas lo siguiente:

#1. Convierte la recopilación de datos, en un pilar básico en tu estrategia de marketing.

Cuantos más datos recojamos a través de nuestros diferentes activos, más información podremos sacar de nuestros clientes y del entorno por el que se mueve nuestra empresa. Ten en cuenta todos los canales a través de los cuales puedes obtener datos, y haz una estrategia de recogida y almacenamiento para cada uno de ellos. Algunos de los canales de donde puedes obtener más información pueden ser:

  • Tu página web.
  • Tus redes sociales.
  • Tu publicidad online.
  • Tu CRM.
  • Tus vendedores.
  • Tu servicio de atención al cliente.

Cuanta más información recojamos, mayores y mejores conclusiones obtendremos de cara a desarrollar mejores estrategias de marketing.

#2. No pierdas nunca de vista la GDPR.

Desde mayo de 2018 las empresas están obligadas a pedir el consentimiento expreso de los usuarios para ceder sus datos o a que sean utilizados para campañas de marketing. Este hecho ha limitado mucho el margen de actuación respecto a los datos, por parte de las empresas. De ahora en adelante, ten en cuenta este hecho y no olvides incorporar en cada canal en el que vayas a recoger información, el aviso legal para que los usuarios expresen su consentimiento o denegación.

#3. Centraliza la información en un mismo contenedor.

Para que todos esos datos tengan sentido y puedas sacar provecho de ellos, es necesario que los tengas recogidos en una misma plataforma o (Data Warehouse Data Lake, …), la cual te permita agrupar tanto datos estructurados como no estructurados. Gracias a este recipiente, podrás hacer las consultas necesarias de cara a sacar conclusiones sobre tus consumidores, y así tomar decisiones Data Driven Marketing.

#4. Pon en marcha la maquinaria del Business Intelligence.

Los datos sin alguien detrás que sepa sacarlos, analizarlos e interpretarlos, no sirven de nada. Puedes haber realizado muy bien tu trabajo a la hora de captación de datos de primera mano y almacenamiento, pero si no sabes qué hacer con ese Big Data, toda esa labor no valdrá para nada.

Para poder sacar conclusiones, crear clusteres, segmentos y crear modelos predictivos que te ayuden a tomar mejores decisiones de marketing, y crear campañas más efectivas, es necesaria una capa de business intelligence.

 

Como ves, los datos de primera mano son muy útiles, pero necesitan de un proceso planificado y una metodología de trabajo. Si piensas que quizás conllevan muchos recursos y que no merece la pena, a continuación, te cuento por qué debes cambiar de opinión.

 

Principales ventajas del 1st Party Data

Ventajas del First Party Data

Los beneficios que generan los datos de primera mano son muchos. A continuación, te cuento los más relevantes. Son estos:

  1. La recopilación de una gran cantidad de datos de calidad 1st Party Data, te ayuda a obtener una visión mucho más real y precisa de lo que está sucediendo en tu entorno online, por poner un ejemplo. Lo que nos va a ayudar a tomar mejores decisiones y optimizar nuestras estrategias data driven.
  2. Los datos de primera mano son propiedad de la empresa, y esto es muy importante. Con la entrada de la RGPD, es fundamental tener en orden los consentimientos de los usuarios, y tener muy claro a quién pertenecen los datos realmente, es decir, a los usuarios. Si nosotros como empresa disponemos de la propiedad de esa información, todo será mucho más sencillo de gestionar.
  3. Permite actualizar la data en función de las circunstancias de la empresa. Un negocio puede cambiar de objetivos. Un segmento de clientes puede cambiar de hábitos. Con el First Party Data, la empresa puede controlar los períodos de recolección de datos, manteniéndolos al día si es necesario. De este modo, la empresa no dispondrá de información desfasada o no útil para el negocio.
  4. Te permite targetizar y segmentar a tus clientes y usuarios en función de tus necesidades, y no bajo los criterios de proveedores de información, a través de los cuales hayas obtenido esos datos.

 

Como habrás podido ver, tener una 1st Party Data te da la posibilidad de activarla para aquellas necesidades que tenga tu empresa, personalizando su relación con cada cliente en cada momento dentro del journey de este.

En Artyco somos expertos en trabajar con First Party Data, ayudándote a ampliar la información de este con Third Party Data que haga darte una visión mucho más global del problema. A través de nuestros departamentos de Digital & CRM, así como de Business Intelligence, ayudamos a nuestros clientes a convertir ese Data en insights. ¿Quieres que hagamos lo mismo contigo? ¿Hablamos?

Emilio Fernández Lastra
Marketing Manager en Artyco Customer Database Marketing
"Después de la hipoteca, el inbound marketing es la mejor herramienta para asegurar una relación a largo plazo."

SOBRE NOSOTROS

Somos un equipo de profesionales compuesto por 100 personas, preocupados por los datos, nuestros clientes y cómo hacer que estos lancen campañas más eficaces centradas en el usuario. Somos intelligence customer centric, innovación y tecnología. #SomosArtyco

C/ Playa de Liencres 2. Edif. Londres Oficina 3 – 1º piso, Parque Europa Empresarial, 28230 Las Rozas (Madrid)

hola@artyco.com

91 640 41 50

Principales métricas y KPIs para el sector Hotelero

El turismo en España supone el 11,7% del PIB, según datos del 2017, siendo el sector hotelero, uno de los más pujantes en la economía española, y por consecuencia, en la economía internacional, estando a la cabeza dentro de esta industria. Como una de las industrias pioneras, también quiere estar a la vanguardia en cuanto a analítica, seguimiento y control, aplicando la inteligencia de negocio a sus procesos. Adquisición, estancia, experiencia de huésped, lealtad, satisfacción… Si estás buscando cómo medir, qué analíticas utilizar y cómo valorar cada punto crítico dentro de tu Hotel, este post te puede ser tremendamente útil para conocer los KPIs para el sector Hotelero. Vamos con ello.

Todos somos conscientes hoy día, que si no medimos somos incapaces de poder mejorar. En un sector en el que se busca continuamente la excelencia como en el hotelero, esta medición se hace prácticamente inevitable. Sin embargo, ¿por dónde empezamos?

Los avances tecnológicos están brindando a la industria hotelera nuevas formas de medir y optimizar su rendimiento. Es por eso que hoy, es más importante que nunca, que los hoteles tengan bien controlados sus KPIs y utilicen esa inteligencia para optimizar sus operaciones y aumentar la rentabilidad. Gracias a esa tecnología, podemos medir el rendimiento de los hoteles de maneras que antes estaban fuera de nuestro alcance.

Antiguamente sólo se medían métricas relacionadas con la ocupación. ¿Sigues midiendo de este modo? Si sigues así, debes saber que ahora es posible obtener KPIs relacionados con las operaciones diarias, el desempeño financiero, la comercialización o el servicio al cliente.

Sin embargo, antes de meternos a definir cada una de ellas, o al menos las mas importantes, hay que resaltar qué es y qué no es un KPI, para que sepas diferenciarlo de una métrica.

 

Qué es y qué no es un KPI

Qué es un KPI y qué no es en Hoteles

Los KPIs son métricas que miden variables como ingresos, gastos, número de visitas… A diferencia de las métricas, los KPIs deben de cumplir con un requisito: tener una relación directa con los objetivos de negocio de la empresa.

De este modo, lo primero que se debe de hacer es definir los objetivos, y en función de estos, seleccionar los KPIs que nos mostrarán si estamos alcanzando esos objetivos o no. Una vez tengamos claro todo esto, sería el momento de definir las métricas que son las que nos ayudarán a ir conociendo en el día a día cuál es el estado y el camino que están llevando nuestras acciones, de cara a modificarlas o replicarlas.

Por tanto, un KPI es una métrica clave para conocer si estamos consiguiendo nuestros objetivos, y no es una métrica intrascendente, como podría ser el tiempo medio en nuestra página web de los usuarios.

Ahora que ya sabes qué es un Kpi y qué no lo es, paso a enumerarte qué KPIs para el sector Hotelero son los más interesantes. Algunos de las principales KPIs para el sector Hotelero, que te pueden venir muy bien para que los tengas en cuenta en futuros análisis son estos.

KPIs para el sector Hotelero

KPIs para el sector hotelero

Dentro de las métricas y KPIs más usados en la industria Hotelera, podemos destacar los siguientes, los cuales te ordeno por carácter más financiero, y por último de Guest Experience, algo que está marcando la diferencia en el sector Hotelero entre quienes lo saben gestionar y quienes no.

 

Entre las métricas más relacionadas con las finanzas del Hotel, tenemos:

 

#1. Average Daily Rate (ADR) o Tarifa Diaria Promedio.

Es una ratio que ayuda a conocer el promedio de ingresos por habitación. Este es muy sencillo de obtener. Sólo tienes que dividir el total de ingresos de las habitaciones, por el total de habitaciones ocupadas.

La fórmula para calcularlo sería la siguiente:

 

ADR = Ingresos a través de las habitaciones / Número de habitaciones vendidas

 

Aunque el ADR te ayuda a conocer de qué manera se están vendiendo las habitaciones del Hotel, no tiene en cuenta las habitaciones vacías o que no se han logrado vender, no llegando a ser del todo válido para conocer el rendimiento general de la propiedad.

Este KPI funciona mucho mejor como métrica que ayuda a ir viendo cuál está siendo el rendimiento de manera continua. También es especialmente útil para compararlo con el ADR en otros periodos de tiempo y analizar así su evolución.

Esta métrica es importante porque es particularmente útil para la previsión de la demanda y el marketing predictivo. De hecho, ADR ayuda a los hoteles a predecir tendencias estacionales, ajustar sus precios en consecuencia y maximizar los ingresos por habitación.

 

#2. Revenue per available room (RevPAR) o Ingresos por habitación disponible.

Es una de las métricas más importantes dentro del sector Hospitality. Esta mide el porcentaje de ingresos por habitación, sin tener en cuenta otros ingresos aparejados a la pernoctación como pueden ser ingresos por venta de tours, servicio de habitaciones, etc.

Existen dos tipos de fórmulas:

  • RevPAR = Ingresos (precio x habitaciones vendidas) / Habitaciones disponibles
  • RevPAR alternativa = ADR x Occ % (occupacy), donde OCC = Habitaciones vendidas / Habitaciones disponibles

Este está considerado como uno de los cálculos financieros más importantes de cualquier hotel para ver cuántos ingresos han obtenido en un período de tiempo determinado.

Cuando se lleva a cabo un análisis, las cifras de RevPar se pueden comparar con RevPar del hotel durante el mismo período de tiempo de los años anteriores o con su conjunto de datos. De este modo puedes comprobar la tendencia que está llevando tu negocio.

Gracias a esta ratio, podemos saber cómo de exitosa es nuestra tarifa para llenar las habitaciones disponibles, sin embargo, no puede servir de comparativa con otras propiedades de la cadena, ya que no se tiene en cuenta la cantidad de habitaciones.

 

#3. RevPAR mínimo para obtener beneficios.

Este te ayudará a conocer cuál es el RevPAR mínimo que deberías lograr para conseguir beneficios en tu Hotel. Esto es imprescindible para poder establecer una estrategia de revenue management que sea acorde a las necesidades de tu Hotel. Para obtener una estimación que te permita saber dónde está el mínimo viable, divide todos los gastos que genera el Hotel, entre el total de habitaciones. Si el RevPAR supera esa cantidad, será señal de que estás obteniendo beneficios.

 

#4. Duración media de la estancia.

Esta métrica es muy útil para conocer cuánto tiempo de media están tus huéspedes en tus habitaciones. Se calcula dividiendo el total de número de noches de ocupación por habitación, entre el número de reservas. Como es lógico, un resultado alto es positivo, mientras que otro bajo, puede ser considerado como negativo, ya que puede suponer un aumento de los costes. Por ejemplo, no tiene el mismo coste para el Hotel, tener a una persona en una estancia de una semana, que 7 huéspedes a una noche por día de estancia a lo largo de esa misma semana en esa habitación.

Esta métrica ayuda tremendamente a la hora de organizar y optimizar la ocupación del Hotel.

Si la duración media de la estancia te indica que durante un cierto período de tiempo estás teniendo más estancias de más de una noche, de lo normal, lo aconsejable sería aumentar tu tarifa de una sola noche, ofreciendo descuentos para estancias de más de dos noches.

La Duración media de la estancia o Average Length Of Stay (LOS) = Total de noches ocupadas / Número de reservas

De este modo, si has ocupado tus habitaciones durante el mes de mayo, en 111 noches en total, teniendo un total de 37 reservas durante ese mes. 111/37 = 3 noches de estancia media.

 

#5. GOPPAR.

Es otra de las métricas clásicas para conocer la ganancia operativa bruta por habitación disponible. Esta métrica proporciona una visión mucho mejor que la del RevPAR que hemos visto en el punto 2, ya que considera no sólo los ingresos generados, sino también los costos operativos incurridos para generar esos ingresos.

La manera de calcularlo es a través de restar los gastos del Hotel con los ingresos del mismo, y dividiendo lo que sale por el número de habitaciones disponibles.

Sin embargo, esta métrica no tiene en cuenta la combinación de ingresos del hotel, no permitiendo una evaluación precisa de los ingresos generados por la habitación. Sin embargo, sí demuestra la rentabilidad y el valor de una propiedad hotelera en su conjunto, por lo que es tremendamente útil.

 

Entre las métricas más relacionadas con la gestión del Guest Experience o experiencia del huésped, tenemos las siguientes:

 

#1. Online Rating.

Todos somos conscientes de que la experiencia no sólo se tiene a través del mundo real, sino que, además, se deja ver a través del mundo digital. En la Era de Internet y las RRSS, los clientes comparten la experiencia que han tenido en el Hotel en foros, plataformas sociales y blogs especializados, siendo necesario que el Hotel sepa monitorizar esos comentarios, además de medirlos.

De este modo, es obligatorio que cualquier Hotel sepa trasladar esos comentarios sobre su propiedad, en métricas de experiencia de huésped.

Para ello, es necesario monitorizar sus calificaciones y comentarios en plataformas de reservas online y RRSS, utilizando esos comentarios para mejorar sus procedimientos operativos, así como la experiencia en general de sus huéspedes.

Piensa que esos comentarios afectan de una manera muy directa a las futuras reservas de tu Hotel, siendo imprescindible para poder servirte de ellas, conocerlas, gestionarlas de la manera adecuada, y revertirlas a tu beneficio en el caso de que sean negativas.

 

#2. Satisfacción de cliente.

El problema que tienen las calificaciones de los huéspedes en Internet, es que se hacen a posteriori de haber abandonado el Hotel, siendo muy complicado para los Managers del Hotel revertir la situación, a no ser que sean muy diestros a la hora de manejar la relación con estos huéspedes en el entorno digital.

Para solucionar esto, lo ideal es poder programar encuestas de satisfacción de cliente una vez vayan a hacer el check-out. Estas encuestas nos pueden ayudar a conocer con adelanto cuál ha sido la Guest Experience de nuestro huésped, de cara a poder actuar sobre él antes de que plasme su comentario o calificación negativa en La Red. Esto lo puedes hacer, ofreciendo alguna oferta o regalo en su próxima visita, o simplemente dándole un trato especial y mostrando un interés real por la situación vivida y qué se va a hacer al respecto.

Las preguntas deben de estar diseñadas para obtener unas respuestas específicas que nos permitan obtener unos resultados en forma de KPI.

 

#3. Índice de fidelización del cliente.

Existen muchos indicadores para medir el grado de fidelización de un cliente, sin embargo, quizás el más útil para un Hotel, es el NPS o Net Promoter Score.

Esta métrica nos va a medir la lealtad de un huésped, pronosticando su comportamiento cuando se realiza una acción determinada.

La forma de calcularlo es a través de una encuesta en la que les tienes que preguntar una vez han dejado el Hotel o en el proceso del check out, si recomendaría el Hotel a algún amigo o familiar, puntuando de 0 a 10.

De aquí te saldrán 3 grupos de huéspedes:

  • Los promotores (con puntuaciones entre 9 y 10). Estos son lo más satisfechos, leales y quienes debes considerar como prescriptores de tu Hotel.
  • Los pasivos (con puntuaciones entre 7 y 8). Son clientes satisfechos, pero que no están especialmente entusiasmados. Si no cuidas a este tipo de huéspedes, no volverán a ninguno de tus Hoteles, a no ser que les interese por precio.
  • Los detractores (con puntuaciones de 0 a 6). Estos son los clientes verdaderamente insatisfechos, y con los que corres peligro de que dañen la imagen de tu Hotel en Internet.

Para calcular el NPS total, sólo tienes que restar el porcentaje de promotores menos el de detractores. El resultado oscilará entre -100 y 100. Si tu resultado es positivo, es que tienes un nivel de lealtad y fidelidad bueno. Si supera los 50 puntos, es que rozas la excelencia.

 

Por supuesto hay muchísimas más métricas y KPIs, sin embargo, creo que estas son las más significativas para ver a grosso modo. En Artyco llevamos décadas trabajando con métricas y KPIs para diferentes sectores, las cuales ayuden a nuestros clientes a mejorar sus procesos y sus comunicaciones, y en definitiva, para que sus clientes sean más fieles y se conviertan en prescriptores de la marca. ¿Quieres que te ayudemos en tu Hotel? Contacta con nosotros.

¿Quieres tener control sobre tus KPIs?

Te ayudamos a definir las métricas KPIs para tu Hotel, y te damos asesoramiento con modelos predictivos y cuadros de mando personalizados.

Cómo utilizar la analítica en el sector Retail

Todos hemos leído u oído acerca del continuo cierre de tiendas físicas. De hecho, en USA debido al sobredimensionamiento de estas respecto a la relación tienda-número de habitante, está suponiendo que esto se esté dando cada vez más. Todo esto, está implicando que muchos de estos retailers estén derivándose hacia el mundo online, pero no les terminan de salir los números. ¿Por qué? Porque están utilizando métricas anticuadas para valorar la conveniencia o no de sus puntos de venta. En este post os voy a contar qué está sucediendo y qué analítica utilizar para ser un Retail inteligente.

En el año 2017 se cerraron un total de 7.000 tiendas en Estados Unidos. ¿Retail Apocalipse? Nada más lejos de la realidad. El número de tiendas por persona en Estados Unidos está entre 15 y 20 veces por encima de la de cualquier otro mercado desarrollado mundial. La economía de mercado ha actuado y por tanto ha ajustado el número de puntos de venta a la cantidad idónea, pero ¿se están cerrando las tiendas físicas adecuadas?

Lo cierto es que el tráfico de clientes a los Centros Comerciales ha ido decreciendo a lo largo de los últimos años. Del mismo modo, también han ido decreciendo los márgenes.

Con estos datos, el justificar la continuidad de tiendas que no cumplen con las expectativas de venta, se complica. La consecuencia, el cierre de aquellos puntos de venta que no son a priori rentables.

Sin embargo, y por desgracia, la decisión de qué tienda cerrar, suele ser muy desafortunada, incidiendo de manera directa en el negocio del retailer, y afectando de manera negativa, aún más que si la mantuvieran.

Esto es debido a que la mayoría de las empresas del sector están utilizando métricas anticuadas para valorar si una tienda debe cerrarse o mantenerse abierta. La mayoría de ellas siguen usando los análisis de tendencias, y la rentabilidad de esa tienda, sin tener en cuenta variables de negocio generales y la influencia que pudiera tener esta en otros canales de venta, como el online.

También, y debido a todo esto, pasan por alto oportunidades valiosas para expandir su presencia en el mercado y desbloquear la falta de crecimiento.

¿Por qué empezó a cambiar todo?

Internet como impulsor de un nuevo paradigma en el Retail

Internet nuevo paradigma Retail

Internet lo cambió y lo está cambiando todo. Quizás en la industria del Retail se ha experimentado más paulatinamente, fundamentalmente por la falta de confianza inicial de los usuarios en la compra online. Sin embargo, ahora, después de los últimos datos sobre eCommerce que hemos obtenido en España, todo hace suponer que el sector va a experimentar un profundo cambio.

Y uno de esos cambios está en el modo en el que los usuarios interactúan con los puntos de venta. Existe una tendencia cada vez mayor de ir a las tiendas físicas a ver los productos, como si fuera un show room, para luego adquirirlos tranquilamente y sin esperar colas desde casa a través del ordenador. Esto es lo que se conoce como showrooming.

Por otro lado, también existen otro tipo de individuos que actúan de modo inverso. Es decir, ven los productos de manera online, como si fuera un catálogo virtual, para luego ir a probárselo y comprarlo a la tienda física. A este concepto se le denomina webrooming.

Estos y otros muchos hechos, deberían hacer recapacitar a los retailers para cambiar sus métricas de medición enfocadas a decidir si una tienda debe seguir o si ha llegado el momento de cerrarla.

Algunos retailers más avanzados ya están trabajando en ello al darse cuenta que los canales han variado y que los customer journeys han evolucionado. Son algunos los que están intentando a través de la analítica y herramientas sofisticadas de recogida de datos y análisis, encontrar el recorrido real que hacen los diferentes consumidores desde que ven su marca, hasta que la compran.

Para ello, están incidiendo poderosamente en nuevas métricas, metodologías y estudios como:

  1. Customer Journey Maps.

El diseño y construcción de Customer Journey Maps (si no sabes lo que son, te recomiendo que eches un vistazo a este post que escribí sobre Qué es y cómo diseñar un Customer Journey Map), permite conocer al detalle cómo se comportan sus clientes con su marca en todo el proceso de compra, así como su experiencia de compra. Esta metodología les está permitiendo conocer de qué manera interactúa el consumidor con la marca y con los diferentes players relacionados con la compra de sus productos o servicios a lo largo de todo el journey. De este modo, no se cierran en la única posibilidad de que, por ejemplo, por haber sucedido una compra en el mundo online, sea este el que ha generado todo el proceso de compra, o al revés.

  1. Modelos de atribución.

Otro método que se utiliza, son los modelos de atribución, los cuales te ayudan a conocer o asignar la conversión a un partner o atribuir en qué porcentajes han influido las diferentes acciones en la conversión final. Si quieres profundizar un poco más en los modelos de atribución, te dejo este post sobre “Qué son los modelos de atribución y cuáles utilizar”.

  1. Analítica geoespacial.

Muchos retailers se han percatado de la particularidad que puede tener un punto de venta concreto, más allá de la cuenta de resultados propia de la tienda, y están desarrollando estudios diferenciados por tienda física en los que se tiene en cuenta una gran cantidad de factores, cobrando protagonismo el factor omnicanal entre todos los demás. Para ello, la analítica geoespacial ha adquirido una gran importancia.

La analítica geoespacial, no es otra cosa que un análisis de datos profundo a través de polígonos espaciales geográficos, es decir, la ubicación. Mas adelante te contaré un poco más sobre ello. Antes, vamos a ver qué sucederá y cómo aplicar esta analítica.

El futuro del Retail y cómo hacer uso de la analítica

El futuro del Retail y su analitica

Como podrás suponer tras la lectura, estamos muy lejos del Retail Apocalypse. Sin embargo, si que estamos inmersos en un profundo cambio en el que habrá que redefinir la estructura que se consideraba lógica del sector. Ahora intervienen muchos más players, más canales, y mucho más complejos.

Se estima que en Estados Unidos el 75-85% de las ventas, seguirán siendo a través de las tiendas físicas en el 2025. Este dato no hace otra cosa que confirmar que las tiendas físicas no desaparecerán como mucha gente predice. Sin embargo, las tiendas físicas se tendrán que transformar en otro tipo de espacio, quizás no focalizado en la venta inmediata, y sí en crear experiencias y facilitar la venta a través del canal en el que se sienta más cómodo el consumidor. Para ello es necesario definir estrategias customer centric y esto sólo se puede conseguir a través de una cultura profunda del dato, sabiéndolo recoger, posibilitando su transformación en información, y lograr convertirlo en un mayor conocimiento del consumidor.

De este modo, la tienda física será un continente de experiencias relacionadas con la marca, un punto de recogida de compras online, y de devoluciones, un lugar en el que grupos de amigos pasen el rato, prueben productos y se hagan selfies los cuales compartan en el momento en las redes sociales, o un destino para aquellos que busquen inspiración. Con este nuevo concepto de tienda, es imposible realizar un análisis centrado en el simple hecho de si la tienda obtiene beneficios o no, ya que esta contribuye de otra manera a la marca, y a las ventas generales de la compañía.

Los nuevos avances respecto a analítica y Big Data, nos están permitiendo conocer cuál es la repercusión global, tanto positiva como negativa de la tienda en cuestión, así como saber de qué manera influye una tienda determinada en el negocio general de la compañía.

A continuación, puedes ver un gráfico ilustrativo de ejemplo sobre cómo intervienen los diferentes canales en las ventas de un retail tipo. Datos que se deben tener en cuenta para conocer la repercusión que tiene ese punto de venta.

Analítica en Retail

Todos sabíamos que una tienda física de por sí, ya es un elemento de marketing similar a un spot publicitario (véase el caso de Zara), ya que está transmitiendo un concepto de marca a una audiencia, representada por todas aquellas personas que entran en el espacio físico, y aquellas que pasan por delante de él. Sin embargo, hasta ahora, no se habían aventurado a conocer cuál podía llegar a ser su repercusión, ya que era difícil de medir.

Sin embargo, con la llegada de internet, y la venta online ya madura en la mayoría de la sociedad desarrollada, no es tan necesario conocer medidas entorno al branding y el awareness, como saber hacia qué otros canales de venta dirigen dichas tiendas físicas, y viceversa.

Una investigación de McKinsey sugiere que “el halo de comercio electrónico de una tienda puede representar del 20 al 40% de su valor económico total”.

Durante décadas, los retailers disponían de diferentes métricas, tales como ventas, información demográfica, tendencias del mercado e información sobre satisfacción de sus clientes. Hoy día, gracias a los nuevos sistemas de recogida y análisis de datos, los retailers disponen de información sobre comportamiento, intereses y hábitos de sus consumidores, como nunca antes hubieran imaginado.

Los diferentes medios sociales, o el Marketing WiFi, son algunas de las vías a través de las cuales se puede conseguir este tipo de información de los consumidores.

Retailers mucho más avanzados están comenzando a utilizar datos geoespaciales, con el objetivo de tener un análisis mucho más profundo de todo lo que ocurre alrededor del punto de venta. Estos datos son propiedad de una tercera empresa, la cual sirve a través de una herramienta de explotación, dicha información para su análisis. Los datos que ofrecen incluyen desde información relacionada con el marketing, hasta de ventas o finanzas, la cual permite al retail hacer un análisis mucho más profundo de quién hay alrededor de su punto de venta, cómo se comporta, cómo compra y cuál es su capacidad.

La combinación de técnicas geoespaciales avanzadas y machine learning, aplicadas a datos de vanguardia sobre el comportamiento del consumidor, está desatando nuevas y poderosas perspectivas para los minoristas. En particular, está ayudando a los retailers a tomar mejores decisiones sobre la expansión o la contratación de sus redes de tiendas.

Por ejemplo, si hay un punto de venta en concreto que está funcionando especialmente bien, a través de estos análisis geoespaciales, se busca un gemelo (un lugar en el que se reúnan las mismas condiciones que en el punto de venta objeto de éxito), y se estudia la posibilidad de abrir una tienda allí.

También les ayuda a desarrollar planes de acción a nivel de tienda para mejorar el rendimiento. Además, algunos minoristas están usando estas ideas para movilizar a su fuerza de ventas y priorizar sus inversiones.

El análisis geoespacial funciona de tal forma: Un equipo de Data analysts crea un modelo analítico ad-hoc para la problemática y los objetivos de la marca, juntando además, información externa e interna. Tras testar cientos de variables, se utilizan técnicas de machine-learning geoespacial para identificar cuáles son los principales factores positivos y negativos que afectan a las ventas del punto de venta, en función del código postal.

Basándose en esos datos, se podría crear un modelo predictivo para conocer cuáles serían las ventas en función del código postal o sección censal de implantación de una tienda y comparar la potencialidad de venta. ¿Analítica del futuro? No, analítica real y que se está utilizando hoy día.

En Artyco creemos firmemente en los datos, y estamos convencidos que estos datos sólo tienen sentido si son para convertirlos en información útil y esta información en conocimiento válido para poder tomar decisiones de negocio. ¿Hablamos?

¿Quieres crear una analítica para tu Retail?

Te ayudamos a definir tus métricas y KPIs y los sistemas más modernos de analítica para que puedas tomar decisiones.

¿Buscas aumentar el conocimiento sobre tus clientes y crear modelos predictivos?

¿Esta información
se te ha quedado
corta?

Accede sin registros y de manera inmediata a nuestro
PDF de presentación del servicio de Business Intelligence

SOBRE NOSOTROS

Somos un equipo de profesionales compuesto por 100 personas, preocupados por los datos, nuestros clientes y cómo hacer que estos lancen campañas más eficaces centradas en el usuario. Somos intelligence customer centric, innovación y tecnología. #SomosArtyco

MADRID

C/ Playa de Liencres 2. Edif. Londres Oficina 3 – 1º piso, Parque Europa Empresarial, 28230 Las Rozas (Madrid)

SALAMANCA

Parque científico universidad de Salamanca. Edificio M3 – Oficina P107 37185 Villamayor (Salamanca)

hola@artyco.com

91 640 41 50

Share This