Soluciones de Customer Intelligence | Artyco

Customer Intelligence

Extraemos la información relevante, la analizamos y sacamos conclusiones,
para que tomes decisiones en base a los datos, no en suposiciones.

Dispones de una gran cantidad de información sobre tus clientes, almacenada en tu CRM, pero más allá de lanzar comunicaciones, no sabes cómo sacarla partido. En Artyco disponemos de un equipo especializado en Customer Intelligence, el cual te ayudará a sacar provecho a esos datos, enriqueciendo la información que ya dispones, utilizando técnicas de análisis predictivo, y en definitiva, ayudando a crear relaciones más fluidas y fuertes entre el cliente y la empresa.

¿Qué podemos hacer?

barra-250

  • Obtener un modelo analítico.
  • Extraer conocimiento de los datos.
  • Clasificar mejor a los clientes por su valor actual y futuro.
  • Medir el resultado de las acciones.
  • Afinar y optimizar la estrategia de contacto.
  • Predecir compra e identificar leads.
  • Reconocer oportunidades.
  • Estudiar comportamientos similares para anticiparse.
  • Aplicar técnicas de Retención de clientes.
  • Perfeccionar la estrategia de negocio.

Identifica oportunidades con Customer analytics

Te analizamos las campañas, identificamos y sacamos los Kpi`s más adecuados en función de tus objetivos, te creamos unos dashboards para que puedas ver los resultados, y te creamos un reporting con las conclusiones.

Optimiza tus campañas con Customer Value

El Customer Value te permite crear segmentaciones y clusters de tus clientes y potenciales, crear modelos de adquisión, de up selling y cross selling, y obtener ratios fundamentales como el CLV, RFM, Crurn…

Construye tu estrategia de Social CRM con Social Customer Intelligence

Análisis de sentimiento, análisis predictivo, next product, recommendation, machine learning… son algunas de las cosas con las que podemos ayudarte si te interesa sacarle mayor partido a las acciones que estás realizando en las redes sociales.

¿Te gustaría que aplicáramos Customer Intelligence en tu negocio?

Nuestro equipo de Customer Intelligence utiliza una Plataforma de BI flexible, segura y escalable, para ofrecer a cada cliente lo que necesite en función del volumen o tipo de información, de la complejidad de los procesos de análisis o de la necesidad para trabajar en tiempo real.

Colaborativa, con funciones de autoservicio para el usuario final, multi-dispositivo, haciendo hincapié en la rapidez de la obtención de los resultados, con integración de distintas fuentes de datos, ya sean estructurados o no estructurados, con gran capacidad analítica, en Real Time y con un alto grado de personalización.

Gracias a la plataforma de BI de Microsoft, con la que trabajamos, el Big Data se convierte en Small Data, siendo accesible para cualquier tipo de empresa. Con esta plataforma y con herramientas de minería de datos, podemos realizar complejos análisis predictivos y aplicarlos con rapidez al negocio, optimizando procesos y maximizando resultados.

¿Quieres ver qué hacemos de customer intelligence para el Grupo Mahou San Miguel?

Últimos posts de Customer Intelligence

barra-250

Data Warehouse y Data Lake. Qué son y para qué sirven

Internet y las nuevas tecnologías han provocado el acceso y el almacenamiento desmesurado de información de los clientes y potenciales. Las empresas son cada vez más conscientes de la importancia que tienen esos datos para conocer mejor a los usuarios y así poder ofrecerles aquello que realmente piden, y no lo que nosotros pensamos que necesitan. Esto es lo que se llama, aplicar estrategias customer centric. Para ello se necesita gestionar altos volúmenes de datos, tanto en tiempo real como organizados. Para ello, no hay nada mejor que un Data Warehouse o un Data Lake. Si no sabes exactamente en qué consisten, no te preocupes, en este post te cuento de una manera sencilla, qué son, para qué sirven y las principales ventajas, ¿vamos a por ello?

El término de Data Warehouse fue acuñado por Bill Inmon, traduciéndose literalmente como Almacén de Datos. Sin embargo, si fuera meramente un almacén de datos, no solucionaría el principal problema por el que se creó, estructurar de una manera lógica la información, con el objetivo de poder construir consultas que aporten información de valor al analista de datos.

Según lo definió el propio Bill Inmon, el Data Warehouse se compone de las siguientes características:

  • Los datos almacenados en el Data Warehouse deben integrarse en una estructura consistente. La información, además, debe estructurarse en diferentes niveles, adecuándose a las necesidades de cada uno de los usuarios.
  • Los datos se deben de organizar por temas para facilitar su acceso y entendimiento por parte de los usuarios. Por ejemplo, todos los datos sobre ventas, deben de estar almacenados en el mismo sitio, de tal modo que al realizar la consulta sobre ventas, sea más sencillo.
  • Los datos suelen representar una situación en un momento presente, sin embargo, el Data Warehouse debe de cargarse con los distintos valores que toma una variable en el tiempo para permitir analizar las tendencias y crear un histórico.
  • La información que se almacena en un Data Warehouse es permanente y no debe ser modificada. Se deben de incorporar nuevos valores de las mismas variables, sin realizar ninguna acción sobre las ya existentes. De este modo podemos sacar conclusiones.

Sin embargo, el objetivo último del Data Warehouse, no es otro que facilitar el procesamiento de datos, con el fin de analizar dicha información desde diferentes puntos de vista y a gran velocidad.

Para ello, es fundamental poder realizar un análisis multidimensional. De este modo, si queremos conocer el número de ventas del modelo de zapatillas X, color azul, de la tienda de la calle Real, en La Coruña, del año 2016 al año 2018, disponiendo de un Data Warehouse, el proceso es sencillo, ya que previamente hemos realizado una jerarquización de la información y creado diferentes dimensiones.

Otra característica importante del Data Warehouse, son los metadatos, ¿qué es esto? Muy sencillo. Imagínate que tienes una serie de datos almacenados, pero no sabes de dónde proceden, cuándo se incluyeron, su fiabilidad, la forma de calcularlos… Con los metadatos tienes toda esa información. Estos metadatos son también los responsables de que se puedan construir consultas, informes o análisis.

Ahora que sabes qué es un Data Warehouse, vamos a ver cuáles son sus principales ventajas.

 

Principales ventajas del uso de un Data Warehouse

Ventajas del Data Warehouse

Estas son las principales ventajas que se pueden encontrar en la implantación de un Data Warehouse en el proceso de gestión del dato en tu negocio:

  • Facilita la toma de decisiones basadas en datos, en cualquier área funcional de la empresa, ya que te proporciona información integrada y global del negocio.
  • La información se convierte en un valor añadido para cualquier negocio, gracias a que permite aplicar técnicas estadísticas de análisis y modelización que ayudan a encontrar relaciones ocultas entre los datos almacenados.
  • Te permite de manera sencilla aprender de los datos del pasado y predecir situaciones futuras para diferentes escenarios.
  • Simplifica la implantación de sistemas de gestión integral de la relación con el cliente, dentro de la empresa.
  • Supone una optimización tecnológica y económica en entornos de Centro de Información, estadística o de generación de informes con retornos de la inversión espectaculares.
  • Es un sistema especialmente útil para el medio y el largo plazo.
  • Aumenta la productividad de las empresas de manera muy sustancial.
  • Te permite realizar planes de una manera mucho más efectiva.
  • Permite la integración de todas las herramientas corporativas. Por ejemplo, nosotros en Artyco integramos toda la información que recogemos a través de todas nuestras aplicaciones (monitorización web, crm, wifi tracking, campañas…) en un Data Warehouse, de donde sacar la información necesaria ante consultas determinadas.
  • Para trabajar de manera correcta un Data Warehouse, es preciso que todos los componentes de la organización hablen el mismo lenguaje, es decir, que todos llamen a las cosas por su nombre. De este modo, gracias al Data Warehouse se pueden unificar conceptos.

 

Qué es un Data Lake y para qué sirve

Que es un data lake

Un Data Lake no es otra cosa que un gran almacén de datos en bruto, los cuales se mantienen tal cual han llegado, y hasta que se necesitan para su uso. La principal diferencia con el Data Warehouse, está en la jerarquía y el almacenamiento de los datos en ficheros y carpetas que utiliza este, frente a la arquitectura plana del Data Lake. Podríamos decir que el Data Lake se nutre de Big Data y datos en tiempo real, tanto estructurados como no estructurados, en una amalgama plana, sobre la cual puedes recoger aquella información que necesites.

Las principales características de un Data Lake son estas:

  • Permite una fácil y rápida búsqueda de datos. El Data Lake está asociado al Big Data, en el sentido de que es el recipiente donde descansan todos esos datos. Al no estar organizados como en el Data Warehouse, se hace necesaria una búsqueda eficiente de la información que en este se contiene. Esta búsqueda se realiza básicamente a través de machine learning
  • Un Data Lake inteligente permite analizar eficazmente el grado de protección de la información que se guarda en los diferentes silos. Con la nueva normativa europea GDPR, esta seguridad en la privacidad de los datos se ve asegurada.
  • El Data Lake te permite ser rápido y disponer de datos en tiempo real. Además, te permite preparar y compartir rápidamente datos que son fundamentales para ofrecer analíticas competitivas.
  • Te permite guardar pasos de preparación de datos y luego reproducir rápidamente esos pasos dentro de procesos automatizados. Es decir, muchas veces los analistas repiten las mismas actividades en la preparación de datos. Con un Data Lake inteligente, puedes acceder a esos procesos y reducir tiempos y esfuerzos.

¿Vamos bien? Pues veamos cuáles son los principales beneficios que tiene el implantar un Data Lake en tu empresa.

 

Principales beneficios de un Data Lake

Ventajas de un Data Lake

Un Data Lake tiene muchas ventajas. Las más destacables son estas:

  • El Data Lake permite centralizar todos los datos en un mismo lugar, vengan de la fuente que vengan. Una vez incluidas en su silo correspondiente de información, pueden ser procesadas a través de herramientas de Big Data. Muchas veces, en esa disparidad de información, habrá datos que requieran un tratamiento especial en cuanto a seguridad. Gracias al Data Lake, este aspecto se puede solventar.
  • Puede que la fuente original del dato esté obsoleta o se haya desactivado, sin embargo, su contenido puede que siga siendo valioso para el análisis. A través del Data Lake, puedes acceder a dicha información.
  • Todo dato que llegue al Data Lake puede ser normalizado y enriquecido.
  • Los datos se preparan en función de la necesidad del momento. Esto permite reducir considerablemente los costes y los tiempos. En el Data Warehouse, por ejemplo, es necesaria dicha preparación.
  • Se puede acceder a la información y enriquecerla desde cualquier punto del planeta, por cualquier usuario autorizado por el Data Lake. Esto ayuda a la organización a recopilar más fácilmente los datos necesarios para la toma de decisiones.
  • Un Data Lake pone la información en manos de un mayor número de personas dentro de cualquier organización, aprovechándose mejor la empresa de ese conocimiento que adquieren dichos individuos.

 

Diferencias entre Data Warehouse y Data Lake

Diferencias Data Warehouse Data Lake

Podemos resumirlas en cinco grandes diferencias.

  • Un Data Lake conserva todos los datos, no sólo los que podrían utilizarse actualmente, sino también aquello que podrían necesitarse en un futuro. En frente, está el Data Warehouse que estudia muy bien qué datos incluir, cuáles son las fuentes de los datos. Además, se necesita dedicar tiempo para entender el negocio y así perfilar los datos. El Data Warehouse al final, contiene un modelo de datos altamente estructurado, diseñado para la generación de informes. El Data Lake utiliza un hardware muy diferente al del Data Warehouse. En el Data Lake, la ampliación a terabytes y petabytes es mucho más económico que en el caso del Data Warehouse. Es por eso, que en este último se mira tanto qué datos son necesarios para conservar, y cuales eliminar, ya que supone un costoso almacenamiento.
  • Un Data Lake soporta todos los tipos de datos, es decir, en este se guardan todos los datos, independientemente de la fuente y la estructura, y además, se mantienen en su forma bruta, transformándolos sólo cuando van a ser utilizados. En el Data Warehouse los datos almacenados son muchos más críticos para el negocio y la realización de informes. Por ejemplo, los datos de imágenes, comentarios en redes sociales, textos, etc, no suelen ser tenidos en cuenta, ya que, como he comentado, su almacenamiento es muy costoso.
  • Los Data Lakes son más flexibles que los Data Warehouses. Uno de los mayores problemas que presenta un Data Warehouse, está en el momento que se necesita realizar un cambio importante. Todo cambio se convierte en una tarea realmente difícil, ya que adaptar un Data Warehouse supone invertir mucho tiempo en el desarrollo de la estructura del almacén. Hoy día, las organizaciones demandan respuestas rápidas a sus preguntas comerciales, y en muchos casos, no pueden esperar a que el Data Warehouse se adapte. En cambio, el Data Lake, al almacenar todos los datos en bruto, permite el acceso de cualquier usuario para que los explote y analice en función de sus necesidades, encontrando la manera de responder a sus preguntas a su ritmo.
  • El Data Warehouse te proporciona unos resultados más limpios, estructurados y fiables. Sin embargo, en el Data Lake, al disponer de datos en bruto y sin estructurar, al hacer las consultas, usuarios no demasiado cualificados, recibirán información rápida, pero no del todo precisa, tal y como la obtendrían de un Data Warehouse. Normalmente, para usuarios de perfil Data scientist, este problema no existe en el Data Lake, ya que ellos crean sus reglas y estructuran la información para preparar sus análisis y modelos. El verdadero problema reside en el 80% del resto de usuarios, quienes simplemente buscan tener acceso a ciertos kpis diarios.

Tanto los Data Warehouses como los Data Lakes están destinados a convivir en las empresas que deseen basar sus decisiones en datos. Como habrás podido entender, ambos son complementarios, no sustitutivos, pudiendo ayudar a cualquier negocio a conocer mejor el mercado y el consumidor, de cara a poder realizar estrategias basadas en el conocimiento de estos, con comunicaciones cada vez más personalizadas, es decir, ser más customer centric.

En Artyco trabajamos con estos sistemas de cuidado, almacenamiento y análisis de datos, apoyado por desarrolladores especialistas y un equipo de data scientists y data analysts que ayudan a nuestros clientes a tomar las decisiones adecuadas. ¿Quieres que hagamos lo mismo con tu empresa?, ¿hablamos?

¿Ves que necesitas un Data Warehouse?

Ponte en contacto con nosotros y te explicaremos cómo sacar valor a toda aquella información que tienes de tus clientes y potenciales.

4 principales criterios para la segmentación de clientes

Antes de lanzarte a realizar cualquier plan de marketing o acción, es necesario que dividas a tus clientes en segmentos, los cuales te permitan afinar lo máximo posible en tu comunicación, principalmente por su homogeneidad en cuanto a diferentes criterios claves para tu negocio. Hay una gran variedad de criterios y cada sector, industria o empresa, puede manejar unos y otros, sin embargo, todos ellos pueden englobarse en 4 básicos. ¿Quieres saber cuáles? Entonces no dejes de leer este post.

Todos sabemos que uno de los principales motivos del éxito de una campaña de marketing radica en la capacidad de personalización del mensaje. Que el receptor de tu mensaje sienta que le estás hablando directamente a él, con su problemática actual y le ofrezcas la solución que anda buscando, como si fuera a medida, hace que la ratio de conversión de dicha acción suba bastante. Pero ¿cómo conseguir esa personalización?

El primer paso para personalizar un mensaje, cuando tienes una gran base de datos con perfiles diferentes, de ámbitos geográficos dispares y con posibilidades económicas e intereses de todo tipo, es segmentándolos. Lógicamente, ante una base de datos comunicable de 150.000 individuos, o incluso de 100, es materialmente imposible comunicarte con cada uno de ellos de manera personal, sin embargo, puedes lograrlo agrupándolos.

Pero ¿cómo crear esos grupos? ¿en base a qué? Estos grupos deben cumplir las siguientes características:

  • Ser identificables fácilmente para la empresa. Los segmentos deben de responder de forma diferente a los productos que ofrece la compañía.
  • Sustanciales, es decir, deben de tener un número suficiente de personas para ser rentables.
  • Diferentes entre sí en cuanto al comportamiento de compra.
  • Accesibles para la empresa, es decir, que ese segmento pueda comprar los productos o servicios que ofrece la empresa.

Para crear estos grupos o segmentos, es fundamental utilizar una serie de criterios de segmentación, o variables que definan a cada uno de esos grupos. Estos pueden ser, bien por razones sociodemográficas, como de comportamiento ante la compra. Estos criterios, se pueden clasificar siguiendo dos características:

1. Criterios generales o específicos. Los generales estarían relacionados con aquello que no tienen nada que ver con el tipo de producto o servicio que vayamos a vender. Siendo indiferente que vendamos helados o persianas. En cambio, los específicos son aquellos que tienen mucho que ver con el producto o servicio.

2. Criterios objetivos o subjetivos. Los objetivos son aquellos que son cuantificables, es decir, que se pueden medir. En cambio, los subjetivos son las variables más cualitativas.

De este modo, si combinamos estas clasificaciones, obtendríamos 4 criterios de segmentación de clientes para comenzar a realizar nuestras campañas de manera óptima.

 

Criterios para la segmentación de clientes

criterios segmentación de clientes

Teniendo en cuenta todo lo anterior y sabiendo que en función de la industria pueden surgir otros muchos criterios, a grandes rasgos, estos serían los 4 principales criterios para la segmentación de clientes.

1. Criterios generales objetivos.

Siguiendo la clasificación anterior, estos criterios corresponderían a variables independientes del producto o servicio que se venda, y cuantificables. Algunas de las variables de este tipo más usadas son:

  • Variables demográficas: edad, sexo, estado civil, tamaño del hogar…
  • Variables geográficas: región de residencia, si es un hábitat urbano o rural, clima…
  • Variables socioeconómicas: nivel de ingresos, nivel de educación y estudios, clase social, profesión…

2. Criterios generales subjetivos.

En este caso son los que corresponden a variables independientes del producto o servicio, y cualitativos o difícilmente medibles. Algunas de las más representativas en este sentido son:

  • La personalidad: Esta es muy difícil de medir, sin embargo, es fundamental a la hora de cómo toma decisiones de compra, así como la importancia que tiene, ya que es duradera en el tiempo. Ser optimista o pesimista, seguro o inseguro… es fundamental para muchas empresas, sin embargo, ¿cómo lo medirías?
  • El estilo de vida: Se refiere a cómo vive esa persona. Normalmente se tienen en cuenta tres características a la hora de clasificarlo:
    • A qué dedica el tiempo libre.
    • Intereses y gustos.
    • Opiniones de sí mismo y del mundo que le rodea.

3. Criterios específicos objetivos.

En este caso, sí están muy relacionados con el tipo de producto o servicio que vendas, y además, son perfectamente cuantificables y medibles. Normalmente, las variables que se tienen en cuenta para definir estos criterios son:

  • Cómo se usa el producto. Es interesante crear grupos en función de quién y cómo usan tu producto o servicio. Siempre se suele contar en este caso, lo que le ocurrió a Johnson & Johnson y su champú específico para niños. En un principio dirigido a estos, pero tras analizar su uso, descubrieron que las madres lo utilizaban también. Tras esto, tuvieron que crear un nuevo criterio de segmentación formado por madres y niños.
  • Situación de consumo. Es cuando segmentas en función de la situación en la que consume el mercado tu producto. Por ejemplo, un fabricante de azúcar puede segmentar su mercado y por tanto su producto, si va dirigido al consumo de un hogar, en cuyo caso sería con un packaging grande, un consumo industrial, con un packaging extragrande o un consumo en un bar, el cual vendría en paquetes individuales.
  • Categoría de usuario. Para esta variable, se suelen utilizar tres variables:
    • Clientes potenciales, es decir, aquellos que no nos han comprado, pero tienen la capacidad de hacerlo y están interesados en ello.
    • Exclientes, es decir, aquellos que nos compraron, pero han dejado de hacerlo.
    • Clientes regulares o aquellos que de forma regular compran nuestro producto.
  • El lugar de compra. Se puede segmentar el mercado en función de dónde adquieren tu producto. Por ejemplo, una fabricante de electrodomésticos puede segmentar su mercado en función de si compran la lavadora en hipermercados, en tiendas especializadas o a contratistas o reformistas de cocinas, entre otros.
  • El grado de lealtad o fidelidad hacia tu producto o marca. En este aspecto es fundamental tener bien medida la lealtad a través del Net Promoter Score o NPS. Si quieres saber más, te recomiendo que leas este post sobre métricas para la fidelización de clientes. En este caso, se pueden clasificar los clientes en 3 tipos:
    • Aquellos que son leales a la marca y que podrían actuar como embajadores de la misma.
    • Son los clientes satisfechos, pero que no han llegado a un nivel de entusiasmo tal que les haga recomendarnos.
    • Son los clientes insatisfechos y por tanto con riesgo real de verter opiniones negativas de la marca a terceros.

4. Criterios específicos subjetivos.

Estos son aquellos que tienen relación con el producto o servicio, pero que no son cuantificables y, por tanto, son difíciles de medir. Las variables a tener en cuenta son:

  • Las ventajas o beneficios buscados en el producto. En un mismo producto, los compradores pueden comprarlo buscando diferentes beneficios. Por ejemplo, los productos de soja, los cuales unos lo buscarán por salud al ser intolerantes a la lactosa, otros por cuidar la línea, otros por preferir los productos vegetales u otros por su sabor.
  • La percepción que tengan de tu producto o servicio. Tus consumidores pueden percibirte como una marca de lujo o como de nivel medio. Esa percepción influirá mucho en cómo comunicarte con esa tipología de consumidor.

 

Si has llegado hasta aquí, es porque realmente te interesa y te gustaría poner en práctica técnicas de segmentación de clientes. Una vez que ya tienes claro qué criterios utilizar en tu segmentación, la disposición de un CRM que te facilite las cosas va a ser clave. En Artyco llevamos más de dos décadas gestionando el CRM de empresas de primer nivel, ayudándoles a segmentar a sus clientes, con el objetivo de personalizar al máximo sus comunicaciones. ¿Hablamos?

 

¿Quieres segmentar tu base de datos?

En Artyco llevamos más de dos décadas ayudando a nuestros clientes a crear segmentaciones que les ayuden en sus comunicaciones.

Usos y aplicaciones de la Inteligencia Artificial en el Marketing

Para quienes no estén demasiado introducidos en el tema, les parecerá que la Inteligencia Artificial es terreno de la ciencia ficción, sin embargo, desde que IBM Deep Blue jugó aquella partida de ajedrez con Kasparov, allá por mediados de los noventa, lo cierto es que esta, está en el día a día de nuestras vidas. La realidad es que la AI toma decisiones más rápida y eficientemente que los seres humanos, y está determinando el futuro de sectores como el Marketing, el Retail y la vida en las ciudades. ¿Quieres saber un poco más sobre esta y cómo se está aplicando? Entonces sigue leyendo.

Vivimos en una sociedad que se caracteriza por la abundancia y movimiento de datos, tanto personales como de comportamiento, generados a través de los medios sociales, el Internet de las Cosas, la navegación online o la información generada como consumidores en las diferentes marcas. El tratamiento de toda esta cantidad de datos se antoja imposible si no es a través de máquinas, siendo la Inteligencia Artificial de un valor fundamental para poder extraer conclusiones y hacer de estos datos, insights válidos para la toma de decisiones.

Como supondrás, es precisamente en el tratamiento de esos datos y su análisis, en donde la Inteligencia Artificial tiene su mayor aplicación en el marketing. Estos son los usos más frecuentes hoy día, de la inteligencia artificial en el marketing:

1. El Data Driven Marketing. Seguro que habrás leído sobre el Data Driven Marketing y cómo tomar decisiones en base a los datos y no en intuiciones como se venía haciendo hasta ahora. Precisamente es aquí, en el análisis de ese Big Data y con la creación de análisis predictivos, en donde la Inteligencia Artificial tiene mucho que decir, facilitando enormemente la visión de esos datos y el poder tomar decisiones basadas precisamente en eso, en datos, y no en intuiciones.

2. Automatización de procesos. Este es otro campo en el que cobra gran importancia la AI, ayudando para personalizar más y mejor las comunicaciones a los clientes y potenciales. En este caso, la utilización de herramientas de automatización que recojan datos de un CRM son muy necesarias. Los vídeos con campos dinámicos que tiran del CRM para que estos sean únicos en función de la información que se tiene del cliente en el CRM, son un claro ejemplo de acción de marketing que está revolucionando el año 2018.

3. Interacción personalizada. Precisamente en la búsqueda por segmentar, personalizar y automatizar procesos con los clientes, la inteligencia artificial ha propulsado la creación de los conocidos Chatbots. Estos han demostrado en los últimos tiempos su utilidad, siendo cada vez más utilizados por grandes compañías con un nivel de atención al cliente máximo. Actualmente se está trabajando en conseguir que los chatbots ofrezcan respuestas más emocionales, logrando empatizar con el usuario, con el fin de ofrecer un servicio mucho más humano y real, y por tanto, más satisfactorio.

4. Creación de contenidos. Existen redes neuronales artificiales capaces de replicar la estructura sináptica básica de un cerebro humano. A través de estas redes en sus fases más avanzadas, han logrado crear piezas originales de música y pintura, de una excelente calidad. El futuro prevé una creación de contenidos aplicados para el marketing, creados por dichas redes neuronales, así como piezas publicitarias que tengan en cuenta datos y respuestas emocionales de los clientes a los que se desea impactar.

5. Publicidad programática. Este tipo de publicidad no podría darse sin algoritmos predictivos, que permiten la automatización de las pujas PPC. Gracias al machine learning, estos algoritmos son capaces de aprender y mejorar de manera constante, con la consecuente optimización de la inversión publicitaria.

Si quieres conocer en profundidad qué es la Inteligencia Artificial y más usos en el marketing y el campo del Customer Intelligence, te recomiendo que eches un vistazo al post que escribí sobre Cómo hacer Customer Intelligence con Inteligencia artificial.

Estos son los campos más evidentes de uso de la inteligencia artificial en el mundo del marketing, sin embargo, hay otros que están empezando a revolucionar, sobre todo el sector Retail, y que me gustaría contaros.

 

Cómo la Inteligencia Artificial está revolucionando el sector Retail. El caso de Amazon Go.

Inteligencia Artificial en Amazon Go

Uno de los sectores que más estoy siguiendo últimamente por la revolución que está llevando a cabo y la “ruptura de esquemas” que ha supuesto a muchos “iluminados” del sector, es el del Retail.

Seguro que habrás oído hablar del “Retail Apocalypse” del cual se viene escribiendo hace ya tiempo. Este aboga por el fin de la tienda física, y la hegemonía de la venta online. Sin embargo, los datos nos dicen otra cosa. En el último año, los movimientos de los gigantes del comercio online van en una dirección inesperada para muchos. Estos están dirigiéndose hacia la tienda física, adoptando una estrategia O2O (online to offline). Tales son los casos de Amazon o Alibaba, como ejemplos más conocidos.

Según Laureano Turienzo Esteban, reconocido experto en Retail Internacional y Speaker, alrededor de un millón de tiendas están ya bajo la franquicia de JD.com y de Alibaba. Lo curioso de esto, es que su estrategia es local, ya que cada tienda recoge insigths locales, como por ejemplo, si en esa zona hay muchos bebés, o por el contrario, es una zona con muchas parejas sin hijos, pero con perro. Esto lo hacen de cara a personalizar su oferta relacionada con las necesidades de su ámbito geográfico. Estos puntos de venta además, están diseñados para hacer los pedidos de manera online a través de los Smartphones y recogerlos en su tienda de barrio. Toda esa inteligencia de negocio, ¿cómo la hacen? ¡Has acertado!

Este movimiento del online al offline (O2O), ha llevado, según el mismo autor, a que Amazon opere ya 600 tiendas físicas. ¿Te parecen muchas? Recuerda el dato que te acabo de dar en el párrafo anterior. ¡Alibaba opera ya en 600.000 tiendas físicas y JD.com 400.000! Es un hecho que la tendencia será a complementar lo online con el offline como una experiencia de compra diferente, pero que mantenga en cierto modo la forma de actuación del entorno online al que están acostumbrados los nuevos clientes que vienen: los clientes verdaderamente nativos digitales. Para ello, se convierte en necesaria la automatización, procesamiento de datos y análisis de cara a conocer mejor qué ofrecer, a qué clientes, y en qué momento.

Todo responsable de marketing debe tener siempre en cuenta, que los avances tecnológicos y científicos tan grandes que estamos experimentando en las últimas décadas, están consiguiendo que los cambios de generación sean cada vez más diferentes y significativos. De este modo, los Milenials (1982-2001) tienen menos que ver con la Generación Z (2001 a la fecha), que los Baby Boomers (1946-1960) con la Generación X (1961-1981), por ejemplo. Es por eso que estos avances tecnológicos y sociales se verán mucho más afectados por factores como:

  • El 5G, el cual se prevé hasta 100 veces más rápido que el 4G, alterando nuestra manera de navegar en cualquier sitio.
  • El Big Data. Como ya he comentado, cada vez se moverán más y más datos sobre las personas, su comportamiento, intereses, hábitos…
  • El Cloud. Al disponer de todo en una nube, afectará la manera de trabajar, de compartir contenidos…
  • El Internet de las Cosas nos reportará más y más data, el cual se podrá utilizar desde un punto de vista comercial, pero también desde un punto de vista de optimización de recursos personales y predicción.
  • La Inteligencia artificial, haciendo que todo lo anterior sea manejable y que reporte unas conclusiones de cara a tomar decisiones de valor.

Siguiendo esa visión y la estrategia de O2O, es muy interesante estudiar el caso de Amazon Go. Te lo cuento a continuación.

Aproximadamente hace dos años, Amazon abrió su primera librería física en un centro comercial de Seattle, siguiéndola otras tres más, en San Diego, Portland y Oregón. Sin embargo, el punto de inflexión lo dio hace relativamente poco, cuando abrió en los bajos de sus oficinas en Seattle, Amazon Go. Este movimiento de Amazon vino causado por la creencia desde la compañía de que hay ciertos productos que interesa más a los clientes buscarlos en las estanterías. Pero también es probable, que la empresa esté detrás de que la experiencia de cliente sea lo más parecida a “grab and go”, eliminando el proceso de pago, así como el tiempo de entrega típico del comercio online. La esencia de Amazon Go, según ellos es: “Hace cuatro años, comenzamos a preguntarnos: ¿Cómo serían las compras si pudieras entrar a una tienda, conseguir lo que quieres y simplemente irte?” Ante esta pregunta, se propusieron eliminar el cuello de botella que existe en todo establecimiento, el momento de pagar. En ciudades en las que el tiempo es más que oro, en las que pasas tu vida en el trabajo, en atascos y en colas para pagar, eliminar este hecho supone una gran ventaja para el público en general.

Amazon ha sabido leer el hecho de que, por primera vez en la historia, vive más gente en entorno urbanos que rurales. Según un estudio de Bank Of America Merrill Lynch, que analiza el auge de las ciudades inteligentes y su impacto en las economías de los países, alrededor del 55% de la población vive en ciudades, suponiendo una actividad económica de 53,56 billones de euros, estimando que para el 2050 aumentará hasta el 70% de la población.

Con estos datos detrás y el interés de unir cada vez más lo online con lo offline, Amazon se lanzó a esta aventura singular. ¿Cómo lo hizo? Para eliminar ese cuello de botella, es necesario establecer una nueva forma de pago. La solución era simple: cargándolo a la cuenta de Amazon de cada consumidor. Pero la facturación automática de los productos a una cuenta de Amazon implica rastrear los artículos y seguir el proceso de compra hasta su fin. Esto es, comporta el seguimiento de cada una de las personas que acceden a la tienda, de sus movimientos y elecciones, con las que ponen de manifiesto sus necesidades, gustos o preferencias. Esta manera de proceder conlleva también, una serie de costes en tecnología que permita monitorizar el espacio físico, a la vez que entrar en el ámbito privado del consumidor.

¿Cómo funciona Amazon Go? En definitiva, el modelo de tienda de Amazon Go está pensado para que el usuario/consumidor pasee por el establecimiento, coja los productos que desee y se marche sin más interacción. El pago, como he comentado, se hace de manera automática y digital, cargando a su cuenta, gracias a su smartphone. Para ello, el establecimiento cuenta con un sistema de pago que se activa nada más entrar el usuario en el establecimiento. Como es lógico, el usuario sólo necesita tener descargada la aplicación en su teléfono móvil.

Ahora viene lo realmente interesante. Para llevar a cabo todo este proceso que parece sencillo, se necesita un complejo sistema de Inteligencia Artificial, interviniendo el eye tracking o visión computarizada orientada al reconocimiento facial, el deep learning o los sensores de movimiento, entre otros.

Estos sensores, además de obtener la información necesaria para realizar los cobros, extraen pautas acerca del comportamiento de los consumidores. Un dato relevante en el análisis del modelo, ya que provee a la empresa de información valiosa para poder mejorar su servicio y llevar a cabo diferentes estrategias y acciones con el fin de aumentar sus ventas futuras. De hecho, de acuerdo a algunas estimaciones, Amazon obtiene un tercio de sus ganancias a través de productos que la gente compra por su sistema de recomendaciones, que no es otra cosa que inteligencia artificial basada en el uso de datos masivos.

Seguro que conoces que, hasta ahora, algunas tiendas utilizaban la inteligencia artificial, pero sólo para hacer pronósticos de demanda de productos. Amazon Go convierte la AI en el eje de toda la experiencia de compra. Te lo explico mejor. Es habitual encontrarnos con puntos de venta con detectores en la entrada, los cuales hacen un conteo de los clientes que entran en el establecimiento. Amazon Go además de contar de manera automática las personas que entran en su establecimiento, identifica a través de la aplicación de los dispositivos móviles, qué usuario ha entrado, registrando sus movimientos en el establecimiento e incorporándolo a su CRM, enriqueciendo la información que ya tiene registrada del cliente, como gustos, preferencias, histórico y posibles necesidades, con lo que haga en el espacio físico. Así, y de manera automática, se relaciona en la nube la información recabada sobre el cliente presencial con la de su perfil “social”, creado a través de referencias online y de otros métodos más tradicionales como las tarjetas de fidelización o los cupones descuento.

 

Sin duda, todos vivimos un momento especial, un momento en el que los avances tecnológicos pueden ayudar mucho a la personalización de la oferta, llegando a presentar a nuestros clientes aquello que necesitan, incluso antes de que estos sean conscientes de ello. Aquí, la Inteligencia Artificial y los equipos de Customer Intelligence orientados a negocio, tendrán una importante función. En Artyco contamos con un equipo de más de 8 personas trabajando para nuestros clientes. ¿Hablamos?

¿Quieres predecir tus ventas?

Te ayudamos a conocer el comportamiento de tus clientes, a fidelizarlos y a predecir sus ventas maximizando tus resultados.

¿Buscas aumentar el conocimiento sobre tus clientes y crear modelos predictivos?

SOBRE NOSOTROS

Somos un equipo de profesionales compuesto por 100 personas, preocupados por los datos, nuestros clientes y cómo hacer que estos lancen campañas más eficaces centradas en el usuario. Somos intelligence customer centric, innovación y tecnología. #SomosArtyco

C/ Playa de Liencres 2. Edif. Londres Oficina 3 – 1º piso, Parque Europa Empresarial, 28230 Las Rozas (Madrid)

hola@artyco.com

91 640 41 50

Share This