91 640 41 50 hola@artyco.com
Los 6 algoritmos de Clustering que todo Data Scientist debe conocer

Los 6 algoritmos de Clustering que todo Data Scientist debe conocer

Los 6 algoritmos de Clustering que todo Data Scientist debe conocer

La economía digital actual nos está llevando a ofrecer productos y servicios, así como comunicaciones, cada vez más personalizadas, en lo que se ha venido a llamar como la hiperpersonalización. Para poder lograr esto, es necesario conocer bien a los clientes, y lo que es más importante, agruparlos por características comunes. Aquí, entra en juego lo que se llama clusterización, vital para poder desarrollar un marketing efectivo. En este post, te vamos a contar qué es un cluster y cuáles son los cinco principales algoritmos que se utilizan para realizarlos. Te va a interesar.

Tanto si te dedicas a la ciencia de datos, como si no, es importante conocer qué algoritmos se utilizan a la hora de crear esos clusters que van a permitir a la empresa, poder agrupar a sus clientes para lograr comunicarse con ellos de manera más personalizada.

Pero antes, es necesario que sepas que clustering o análisis de grupos o agrupamiento, consiste en reunir objetos o personas por similitud, en grupos o conjuntos de manera que los miembros que lo componen tengan características comunes entre sí y los grupos sean lo más diferenciados.

Para hacerlo, se utilizan lo que se llama, algoritmos de agrupamiento. Estos, son un procedimiento de agrupación de una serie de vectores de acuerdo con un criterio, que por lo general son la distancia y la similitud.

En Data Science, se utiliza el análisis de agrupamiento para obtener información valiosa de nuestros datos, y ver en qué grupos caen los puntos de datos cuando aplicamos un algoritmo de agrupamiento.

Vamos a ver los algoritmos más populares, así como sus ventajas y sus desventajas. Vamos a ello.

 

#1. K-Means Clustering

Puede que este sea el algoritmo de agrupación más conocido, ya que es el que primero se enseña en las clases de introducción a la ciencia de datos y en machine learning, además, es muy fácil de implementar.

Algoritmo K-Means clustering

 

K-means tiene la ventaja de que es bastante rápido, ya que se realizan muy pocos cálculos. Sin embargo, tiene un par de desventajas.

La primera de ellas es, que debes seleccionar cuántos grupos/clases hay. Esto no siempre es trivial e, idealmente, con un algoritmo de agrupamiento, nos gustaría que este los descifrara por nosotros. Otra desventaja podría ser que, K-means comienza con una elección aleatoria de centros de conglomerados y, por lo tanto, puede generar diferentes resultados de conglomerados en diferentes ejecuciones del algoritmo. Por lo tanto, los resultados pueden no ser repetibles y carecer de consistencia. Otros métodos de clusterización son más consistentes.

 

#2. K-Nearest Neighbours

El algoritmo de k-nearest neighbours, también conocido como KNN o k-NN, es un clasificador de aprendizaje supervisado no paramétrico, que utiliza la proximidad para hacer clasificaciones o predicciones sobre la agrupación de un punto de datos individual. Aunque puede utilizarse tanto para problemas de regresión como de clasificación, normalmente se utiliza como algoritmo de clasificación, partiendo de la base de que se pueden encontrar puntos similares cerca unos de otros.

La principal desventaja de este algoritmo es el incremento de los tiempos de cálculo a medida que aumenta el número de ejemplos y/o predictores. Actualmente, no es un problema grave dada la mejora de recursos de computación existentes.

 

#3. Mean-Shift Clustering

Este es un algoritmo basado en una ventana deslizante que intenta encontrar áreas densas de puntos de datos. Es un algoritmo basado en el centroide, lo que significa que el objetivo es ubicar los puntos centrales de cada grupo/clase. Funciona actualizando los candidatos para que los puntos centrales sean la media de los puntos dentro de la ventana deslizante. Estas ventanas candidatas luego se filtran en una etapa de pos-procesamiento para eliminar prácticamente todos los duplicados, formando el conjunto final de puntos centrales y sus grupos correspondientes.

Algoritmo Mean Shift Clustering

A diferencia del agrupamiento de K-means, no es necesario seleccionar el número de clusters, ya que el desplazamiento de la media lo descubre automáticamente. Esa es una gran ventaja. El hecho de que los centros de los cúmulos converjan hacia los puntos de máxima densidad también es bastante deseable, ya que es bastante intuitivo de entender y encaja bien en un sentido natural basado en datos. El inconveniente es que la selección del tamaño de ventana/radio “r” puede no ser trivial.

 

#4. Clustering espacial basado en la densidad de aplicaciones con ruido (DBSCAN)

DBSCAN es un algoritmo agrupado basado en la densidad, similar al mean-shift, pero con un par de ventajas notables.

En primer lugar, no requiere una cantidad determinada de clústeres en absoluto. También identifica los valores atípicos como ruidos, a diferencia del cambio de media, que simplemente los arroja a un grupo incluso si el punto de datos es muy diferente. Además, puede encontrar clústeres de tamaño y forma arbitrarios bastante bien.

El principal inconveniente de DBSCAN es que no funciona tan bien como otros cuando los grupos tienen una densidad variable. Esto se debe a que la configuración del umbral de distancia ε y minPoints para identificar los puntos de vecindad variará de un grupo a otro cuando la densidad varía.

Algoritmo de clustering DBSCAN

 

#5. EM (Expectation-Maximization) Clustering, usando una mezcla de modelos gausianos.

El algoritmo K-Means es quizás el más utilizado, sin embargo, hay ciertas distribuciones de los datos, sobre los que este algoritmo no es tan eficaz, ya que funciona sobre agrupaciones circulares.

Por ejemplo, en estos casos como el que adjunto, K-Means no puede manejarlo, ya que los valores medios de los grupos están muy juntos. K-Means también falla en los casos en que los clusters no son circulares, nuevamente como resultado de usar la media como centro del cluster.

 

Algoritmo EM gausiano clustering

 

Estos modelos de mezcla gausiana, nos ofrecen una mayor flexibilidad que los K-means. Con estos, tenemos dos parámetros para describir la forma de los grupos. De esta manera, los grupos pueden tomar cualquier tipo de forma elíptica.

Este tipo de modelos tiene principalmente 2 ventajas: son mucho más flexibles en términos de covarianza de clúster que K-Means; y que, debido al parámetro de desviación estándar, los grupos pueden adoptar cualquier forma de elipse, en lugar de estar restringidos a círculos, como es el caso de los K-means.

 

#6. Cluster por jerarquías.

Los algoritmos de agrupamiento jerárquico se dividen en 2 categorías: de arriba hacia abajo o de abajo hacia arriba.

Los algoritmos de abajo hacia arriba tratan cada punto de datos como un único grupo desde el principio y luego fusionan (o aglomeran) sucesivamente pares de grupos hasta que todos los grupos se fusionan en un solo grupo que contiene todos los puntos de datos. Por lo tanto, el agrupamiento jerárquico de abajo hacia arriba se denomina agrupamiento aglomerativo jerárquico o HAC (hierarchical agglomerative clustering). Esta jerarquía de conglomerados se representa como un árbol (o dendrograma). La raíz del árbol es el único racimo que reúne todas las muestras, siendo las hojas los racimos con una sola muestra.

Algoritmo por jerarquías clustering

 

El agrupamiento jerárquico no requiere que especifiquemos el número de clústeres e incluso podemos seleccionar qué número de clústeres se ve mejor ya que estamos construyendo un árbol. Además, el algoritmo no es sensible a la elección de la métrica de distancia; todos tienden a funcionar igual de bien, mientras que con otros algoritmos de agrupamiento, la elección de la métrica de distancia es crítica. Un caso de uso particularmente bueno de los métodos de agrupación en clústeres jerárquicos es cuando los datos subyacentes tienen una estructura jerárquica y desea recuperar la jerarquía; otros algoritmos de agrupamiento no pueden hacer esto. Estas ventajas del agrupamiento jerárquico tienen el costo de una menor eficiencia, ya que tiene una complejidad temporal de O(n³), a diferencia de la complejidad lineal de K-Means y GMM.

 

Como ves, existen un gran número de algoritmos de agrupación, los cuales funcionarán mejor o peor en base a tus datos o tus objetivos, por poner un ejemplo. Para tener éxito, es necesario disponer del talento dentro de tu compañía, el cual sea capaz de crear la clusterización adecuada a tus necesidades. ¿Te ayudamos?

 

Emilio Fernández Lastra

Chief Marketing Officer

“Después de la hipoteca, el inbound marketing es la mejor
herramienta para asegurar una relación a largo plazo”

¿Te ha parecido interesante lo que has leído?

En artyco podemos ayudarte a conseguir tus objetivos

¿Hablamos?

Si, quiero

+34 916 404 150

© Artyco comunicación y servicios - Todos los derechos reservados

© Artyco comunicación y servicios - Todos los derechos reservados

Qué son los MLOps

Qué son los MLOps

Qué son los MLOps

El Machine Learning Operations o MLOps se refiere al uso de aprendizaje automático por parte de los equipos de desarrollo/operaciones (DevOps) en las organizaciones de la manera más ágil y eficaz posible. El MLOps es una de las nuevas tendencias en Big Data, que se basa principalmente en ofrecer un conjunto de mejores prácticas para que las empresas ejecuten la IA con éxito. El MLOps es un campo que podríamos denominar como novedoso, sobre todo porque la inteligencia artificial en el ámbito empresarial no se ha empezado a utilizar hasta hace poco y no se ha necesitado la optimización de sus procesos hasta ahora. ¿Quieres saber qué es?, ¿por qué debes de empezar a aplicarla?, ¿qué debes de tener en cuenta y cuál es su proceso? Aquí te lo cuento todo.

Llevamos algunos años experimentando un crecimiento importante en todo lo relacionado con la recopilación de datos para su uso analítico. Este, cada vez más, se está aplicando al campo de la inteligencia artificial. Esto conlleva un cambio en los procesos tecnológicos y en las arquitecturas empresariales, ya que son necesarias nuevas tecnologías para abordar los retos que trae esta nueva tendencia.

El crecimiento del volumen de datos y la necesidad de utilizar nuevas tecnologías para el desarrollo de modelos analíticos está haciendo que existan ineficiencias en la gestión del ciclo de vida del dato y de los modelos analíticos, así como en el desarrollo de aplicaciones relacionadas, como por ejemplo la dependencia que tienen los equipos de analytics de los de data para que les pasen los datos necesarios; la falta de capacidad y arquitectura empresarial para abordar todo el ciclo de vida del dato; la dificultad de encontrar el dato apropiado ante tal repositorio; y la baja calidad de los datos por norma general, entre muchas otras.

Para poder agilizar el desarrollo de aplicaciones que sirvan para solventar estos problemas, es necesario trabajar sobre tres pilares básicos que son:

  • Los datos. Cómo los gestionamos y gobernamos.
  • Los modelos analíticos. El desarrollo, gobierno y gestión de estos modelos.
  • Las aplicaciones. El modo tradicional de implementar funcionalidades dentro de las arquitecturas empresariales.

MLOps se presenta como un enfoque importantísimo para solucionar todos estos problemas que te he mencionado anteriormente, además de ser una manera de ayudar en el desarrollo de aplicaciones de inteligencia artificial ágil y que aporten valor al negocio de manera rápida, siendo las bases de una compañía Data & AI Driven.

Vamos a ver qué es exactamente MLOps.

 

Qué es MLOps.

Qué es MLOps

Tras el ‘boom’ de la IA en el año 2012, al ganar un concurso un investigador que logró el reconocimiento de imágenes mediante el machine learning, esta disciplina se extendió rápidamente. En la actualidad, su uso es mucho más generalizado, llegando la inteligencia artificial a nuestro día a día, como el traducir al instante una página web, enrutar automáticamente las llamadas del servicio de atención al cliente de una empresa, e incluso, ayudar a leer las radiografías en los hospitales, entre otras muchas cosas más.

La gran utilidad que tiene el ML en cualquier campo de la vida y los negocios va a hacer que se convierta en algo tan común como una aplicación de software. Es por eso, que será necesario que su ejecución sea lo más simple posible.

Hace una década, como ya te adelanté, DevOps se creó como una forma de que pudieran trabajar de manera conjunta los desarrolladores de software (los Devs) y los equipos de operaciones de IT (los Ops). Ahora, lo que se incorpora es el machine learning y por tanto, un nuevo equipo de trabajo: los data scientists.

MLOps permite la colaboración y comunicación entre todos los implicados en el ciclo de vida del desarrollo de analítica avanzada. Aquí se incluiría desde los usuarios de negocio, hasta los Data Scientists y las personas de operaciones de IT necesarias para el desarrollo de los modelos analíticos, provocando la agilización del proceso completo.

Estos, seleccionan conjuntos de datos y crean modelos de inteligencia artificial que los analizan, para luego ejecutarlos a través de los modelos creados, de manera disciplinada y automatizada.

 

 

Ciclo MLOPs

MLOps combina machine learning con desarrollo de aplicaciones y operaciones – Fuente: Neil Analytics

 

El MLOps origina, sobre todo, un enfoque útil para la creación y la calidad de las soluciones de inteligencia artificial y machine learning. Al adoptar un enfoque de MLOps, los data scientists y los ingenieros de machine learning pueden colaborar y aumentar el ritmo de desarrollo y producción de modelos, mediante la implementación de prácticas de integración continuas, con la monitorización, la validación y la gobernanza adecuados de los modelos de ML.

Ya tienes una idea de qué es, pero seguro que te preguntarás por qué son necesarios. Pues no te muevas que te lo explico.

 

Por qué son necesarios los MLOps.

Por qué son necesarios los MLOps

Muy sencillo, porque llevar a cabo un proceso de machine learning conlleva muchos pasos muy complejos, como la ingesta de datos, su preparación, el entrenamiento de modelos y su ajuste e implementación, la supervisión de estos modelos, su explicabilidad y mucho más. Además, tienen que coordinarse especialistas en ciencia de datos e ingenieros de ML. Por último, todo ello requiere de un severo rigor operativo para mantener todos estos procesos sincronizados y trabajando a la par. MLOps abarca todo este ciclo con el fin de que el proyecto llegue a buen puerto lo más rápidamente posible.

Puedo resumirte por qué debes desarrollar esta práctica a través de estos dos motivos:

  1. El número de modelos de analítica avanzada está en continuo crecimiento. Desde hace unos años la mayoría de las compañías han empezado a desarrollar modelos cuyo retorno de inversión se ha demostrado, lo que ha llevado a que cada vez se quieran aplicar técnicas avanzadas de análisis de datos a más ámbitos de negocio. Esto conlleva a que sea necesario desarrollar cada vez más modelos.
  2. Los modelos, una vez puestos en producción, suelen perder precisión. Esto es debido a que se han entrenado con un conjunto de datos que representaban el estado de la realidad pasada. Según va evolucionando ésta, los datos van cambiando lo que hace que el acierto del modelo vaya reduciéndose. Esta situación se soluciona reentrenando el modelo con nuevos datos.

Estos dos motivos hacen que sea totalmente necesario agilizar el ciclo de vida de los modelos analíticos, el cual va desde la concepción del modelo a través de la toma de requisitos de negocio, hasta el despliegue y monitorización de este modelo en producción. Vamos ahora a ver cuáles son sus principales beneficios.

 

Cuáles son los beneficios de MLOps.

Beneficios MLOps

Los principales beneficios son:

  • Eficiencia. MLOps permite lograr un desarrollo de modelos de ML más rápido, de mayor calidad y una implementación y producción más ágiles.
  • Escalabilidad. Se pueden supervisar, controlar, administrar y monitorizar miles de modelos para la integración, la entrega y la implementación continua. Específicamente, MLOps brinda reproducibilidad de las canalizaciones de ML, lo que permite una colaboración más estrecha entre los equipos de datos, reduce los conflictos con los desarrolladores e IT, y acelera la velocidad de lanzamiento.
  • Reducción de riesgos durante la validación de modelos (reducir la inversión en tiempo y dinero en modelos que no van a ser útiles).
  • Constante evolución de los modelos. A través de la monitorización y los datos, se consigue que los modelos evolucionen de forma continua, mejorando la eficacia de los sistemas de IA.

Sin embargo, debes de tener en cuenta una serie de cosas antes de ponerte a usar MLOps:

  • Debes de cuidar mucho la calidad de tus datos, es decir, tener muy presente de dónde vienen, su calidad, si son fiables, etc.
  • Entender que al cabo del tiempo los modelos van perdiendo calidad y se degradan.
  • La localidad de los datos en el momento que se están entrenando.

Como has visto, el desarrollo de modelos analíticos requiere muchas tareas y dependencias que añaden complejidad y retraso. El objetivo de MLOps no es otro que eliminar todas esas complejidades, con el fin de que el Data Scientist pueda trabajar de forma más eficiente, aportando valor real al negocio en un periodo de tiempo más corto. Todo ello, a través de automatizaciones de procesos y/o simplemente, organizando los procesos de manera más ágil.

Las automatizaciones están ayudando a cambiar los procesos empresariales, y en algo tan complejo como es la inteligencia artificial, estas son la clave para que dicha IA sea realmente útil. La mejor opción; apoyarse en profesionales con experiencia y compañías que te acompañen en el complicado camino que supone el machine learning y la inteligencia artificial. ¿Hablamos?

Emilio Fernández Lastra

Chief Marketing Officer

“Después de la hipoteca, el inbound marketing es la mejor
herramienta para asegurar una relación a largo plazo”

¿Te ha parecido interesante lo que has leído?

En artyco podemos ayudarte a conseguir tus objetivos

¿Hablamos?

Si, quiero

+34 916 404 150

© Artyco comunicación y servicios - Todos los derechos reservados

© Artyco comunicación y servicios - Todos los derechos reservados

Cómo afectará la IA a la industria global, en el 2022

Cómo afectará la IA a la industria global, en el 2022

Cómo afectará la IA a la industria global, en el 2022

El 2022 está siendo un año de gran incertidumbre, y como tal será un momento para que algunas empresas prosperen a causa de ello. A diferencia de otros momentos iguales, en este, la implantación correcta de la inteligencia artificial será un elemento diferenciador que ayudará a decidir cuáles de esas empresas sacarán partido de este momento. En este post te contaré dónde centrarán las empresas sus esfuerzos de IA a medida que analicen big data y busquen nuevas oportunidades de ingresos, con el objetivo de sacar partido a este momento de incertidumbre. ¿Te apuntas? Vamos a ello. 

Los problemas en la cadena de suministro derivados de la pandemia global están afectando a la producción de todo tipo de industrias. Desde automóviles, a aparatos electrónicos, pasando por muebles o incluso el papel higiénico.  

Al mismo tiempo, los precios mundiales de los alimentos han saltado a su nivel más alto en más de una década, a medida que la escasez de trabajadores, el cierre de fábricas y los altos precios de los productos básicos destrozan los planes incluso en las operaciones logísticas y de previsión más sofisticadas. 

Ante esta situación, muchas empresas se están empezando a mover buscando alternativas relacionadas con la tecnología, que les haga más competitivos, así como que les ayude a prever tendencias coyunturales y optimizar sus procesos de fabricación. 

Según una encuesta de PWC que se realizó a mitad de 2021 entre más de 1.000 empresas al nivel global, en nueve sectores, entre ellos la banca, la salud, o la energía, encontró que el 86% de ellas estaban ya preparadas para hacer de la IA una “tecnología convencional”. 

En función de lo que salió de esa encuesta, así como de otros estudios relacionados, podemos determinar, cuáles pueden ser las principales predicciones para el 2022 sobre Inteligencia Artificial en la industria global. Vamos a verlas. 

 

7 principales predicciones sobre IA en la industria global, para este 2022.

Hay muchas. Unas en desarrollo, otras ya implantadas y contrastadas, pero todas aún sin ser generales en su uso a nivel internacional. Sólo unas pocas empresas se están aprovechando hoy día de las oportunidades que les ofrece esta tecnología. 

Aquí te presento algunas de las que más se hablan, y siempre en función de varios informes y opiniones de expertos al nivel internacional. Vamos a ver cuáles son: 

7 predicciones sobre la IA en la industria global en el 2022

 

#1. IA conversacional.

El año pasado la Inteligencia artificial conversacional fue utilizada mayormente en el campo de los videojuegos y el entretenimiento. Esta se utilizó sobre todo, para hacer que los videojuegos fueran más inmersivos permitiendo la interacción en tiempo real con los diferentes personajes.

Este 2022, es el año de utilizarla también para el ámbito laboral. Estas nuevas herramientas de inteligencia artificial conversacional nos permitirán trabajar de manera más eficiente y efectiva, utilizando el procesamiento del lenguaje natural. La síntesis de voz está lista para volverse tan emotiva y persuasiva como la voz humana en este 2022, lo que va a ayudar a industrias como el comercio minorista, la banca y la atención médica a comprender mejor y servir mejor a sus clientes.

Yendo más allá del procesamiento del lenguaje natural, las empresas que utilizan tanto el habla como el texto para interactuar con otras empresas y con sus clientes, emplearán la IA a medida que avanzan en ella, para comprender el contexto o el sentimiento en lo que se está diciendo. ¿El cliente está frustrado? ¿Tu jefe está siendo sarcástico? A pesar de que en el lenguaje español esto es especialmente complejo, se acelerará la adopción de herramientas como OpenAI Github copilot, que ayuda a los programadores a ser más efectivos en su trabajo relacionado con esto.

 

#2. Automóviles programables.

Todo automóvil perdía valor en el mismo instante en el que salía del concesionario, sin embargo, muy pronto esto dejará de suceder. Veremos a más fabricantes de automóviles moverse para reinventar la experiencia de conducción mediante la creación de arquitecturas definidas por software con capacidad para admitir nuevas aplicaciones y servicios a través de actualizaciones inalámbricas automáticas. Los vehículos mejorarán y serán más seguros con el tiempo.

La IA ayudará a desestresar la conducción diaria, por ejemplo, hasta el centro de trabajo. Esta inteligencia artificial actuará como un asistente personal, mejorando el viaje en el vehículo, aportando una experiencia más segura y agradable.

Los ocupantes del vehículo tendrán acceso a servicios inteligentes que siempre están activos, permitiéndoles utilizar IA conversacional en tiempo real para recomendaciones, alertas, controles de vehículos y mucho más.

Además, la inteligencia artificial y el análisis de datos ayudarán a entrenar y validar los vehículos autónomos para una amplia gama de condiciones de conducción, brindando seguridad diaria diseñada para el largo plazo.

 

#3. Estándares emergentes para 3D enfocados en el Metaverso.

Estos avances irán dirigidos a la descripción de mundos virtuales como el del Metaverso. Los estándares como Universal Scene Description (USD) y glTF evolucionarán rápidamente para satisfacer las necesidades fundamentales de la Web3 y los gemelos digitales.

La tasa de innovación en IA se ha acelerado durante toda esta década, pero la IA no puede avanzar sin grandes cantidades de datos diversos y de alta calidad. Hoy en día, los datos capturados del mundo real y etiquetados por humanos son insuficientes tanto en términos de calidad como de diversidad, para saltar al siguiente nivel de inteligencia artificial. En 2022, veremos una explosión de datos sintéticos generados a partir de mundos virtuales (Si quieres saber un poco más sobre cómo será el Metaverso y su aplicación en el área del marketing, te recomiendo nuestro post “Qué es el Metaverso y cómo influirá en las marcas”).

 

#4. AI4Science. La IA facilitará el descubrimiento de nuevos fármacos.

En los últimos 25 años, la industria farmacéutica ha pasado de desarrollar fármacos a partir de fuentes naturales (por ejemplo, plantas) a realizar cribados a gran escala con moléculas sintetizadas químicamente. El machine learning o aprendizaje automático permite a los científicos determinar qué fármacos potenciales merece la pena evaluar en el laboratorio, y la forma más eficaz de sintetizarlos, generando, según dicen los expertos, hasta un millón de fármacos nuevos.

La IA conducirá a avances en el descubrimiento de nuevos medicamentos y tratamientos, y revolucionará la atención médica. 

La categoría “medicamentos, cáncer, molecular, descubrimiento de fármacos” recibió la mayor cantidad de inversión privada en IA en 2020, con más de USD 13.800 millones, 4,5 veces más que en 2019, por poner un ejemplo.

La industria de dispositivos médicos tiene una oportunidad innovadora, habilitada por la inteligencia artificial, para minimizar y reducir costos, automatizar y aumentar la accesibilidad, y ofrecer innovación continuamente durante la vida útil del producto. Las empresas de dispositivos médicos evolucionarán desde la entrega de hardware hasta la provisión de sistemas de software como servicio (SaaS) que se pueden actualizar de forma remota para mantener los dispositivos utilizables después de la implementación.

La IA se integrará profundamente con HPC (computación de alto rendimiento) y hará posibles las simulaciones y modelos científicos a una escala y fidelidad sin precedentes en áreas como los modelos meteorológicos y climáticos.

 

#5. IA perimetral en procesos de fabricación.

En este caso, la tecnología 5G puede suponer nuevas oportunidades para la computación perimetral. La IA-on-5G desbloqueará casos en los que la IA perimetral podría aportar importantes soluciones para la industria. Esto abriría el camino a lo que se denomina como “Industria 4.0”: automatización de plantas, robots de fábrica, monitoreo e inspección, además de facilitar sistemas autónomos en carreteras de peaje o en aplicaciones de telemetría de vehículos. Del mismo modo, supondrá un avance en lo relacionado con espacios inteligentes en el retail, ciudades, cadenas de suministro, incluso lo que se llama la fábrica inteligente. Estas fábricas usan cámaras y otros sensores para realizar una inspección y un mantenimiento predictivo. Sin embargo, la detección es solo el primer paso. Una vez detectado, se deben tomar medidas. Esto requiere una conexión entre la aplicación de IA que hace la inferencia y los sistemas de monitoreo y control, u OT, que administran las líneas de ensamblaje, los brazos robóticos o las máquinas de recoger y colocar.

 

#6. IA para acelerar el servicio en negocios como el de la hostelería, el retail y la logística.

Los clientes cada vez demandan más un servicio más rápido. Por ello, precisamente los restaurantes de comida rápida han sido los primeros en implantar la IA para la toma de pedidos automatizada. Eso es posible gracias a los avances en la comprensión del lenguaje natural y el habla, combinados con los sistemas de recomendación. De este modo, los ‘fast food’ implementarán la toma de pedidos automatizada para acelerar los tiempos de entrega y mejorar las recomendaciones.

En los supermercados y las grandes tiendas, los minoristas aumentarán el uso de análisis de video inteligente para crear cajas automatizadas y compras autónomas o sin cajero.

La logística es otro de los puntos en los que la IA tendrá especial importancia. Y es que, si tenemos en cuenta que el punto fuerte de la inteligencia artificial está en simplificar los problemas increíblemente complejos, como es el caso de la cadena de suministros, en este aspecto va a tener mucho que decir. Tras la falta de aprovisionamiento que estamos viviendo actualmente (ver post “La crisis del desabastecimiento: La atención al cliente como solución”), optimizar la cadena de suministros, disponiendo del producto y realizando envíos mucho más rápidos, va a ser un área crítica para desarrollar con la IA, en el sector logístico.

La IA puede permitir pronósticos más frecuentes y precisos, asegurando que el producto correcto esté en la tienda correcta en el momento correcto.

Del mismo modo, la IA y el Data Science, ayudarán en todo lo relacionado con el almacenamiento (montacargas autónomos, automatización del empaquetado…) y la entrega de última milla (simulaciones de rutas).

 

#7. Descongelación de los Data Lakes como elementos clave en la analítica de datos.

Los data lakes han supuesto desde el inicio del trabajo del Big Data, un elemento fundamental, sin embargo, han estado, por así decirlo, congelados, debido a que están aislados y desacoplados del machine learning. Sin embargo, estos son muy efectivos, como he comentado, en el procesamiento de datos a gran escala (ver “Data Warehouse y Data Lakes. Qué son y para qué sirven”).

En este 2022 se prevé que los Data Lakes se modernicen definitivamente, a través de canalizaciones de datos de un extremo a otro debido a tres puntos de inflexión: infraestructura centralizada, la agilidad de las aplicaciones basadas en Kubernetes y el mejor almacenamiento adecuado a la tarea de su clase.

 

Durante la pandemia, a medida que los confinamientos se convirtieron en la nueva normalidad, las empresas y los consumidores se ‘digitalizaron’ cada vez más, proporcionando y comprando más bienes y servicios online. Este hecho trajo consigo un incremento exponencial de datos sobre esos consumidores, abriendo la puerta a un nuevo uso de esos datos que, junto con la IA, pueden abrir una nueva dimensión y convertirse en los impulsores de múltiples aplicaciones en todos los sectores.

Al nivel interno empresarial, la inteligencia artificial influirá sobre todo en la automatización de procesos, evitando que los empleados dediquen demasiado tiempo a trabajos repetitivos, pudiéndose centrar en tareas más creativas, por poner un ejemplo. Esto mejorará la productividad.

Ventajas de la IA

Llevamos años hablando de ella, pero quizás sea ahora en el 2022 cuando realmente empecemos a ver de una manera más evidente su aplicación real. La explosión de la Inteligencia Artificial no ha hecho más que empezar.

Emilio Fernández Lastra

Chief Marketing Officer

“Después de la hipoteca, el inbound marketing es la mejor
herramienta para asegurar una relación a largo plazo”

¿Te ha parecido interesante lo que has leído?

En artyco podemos ayudarte a conseguir tus objetivos

¿Hablamos?

Si, quiero

+34 916 404 150

© Artyco comunicación y servicios - Todos los derechos reservados

© Artyco comunicación y servicios - Todos los derechos reservados

Cómo soluciona la ciencia de datos o Data Science, problemas reales

Cómo soluciona la ciencia de datos o Data Science, problemas reales

Cómo soluciona la ciencia de datos o Data Science, problemas reales.

La ciencia de datos o Data Science, involucra métodos científicos, procesos y sistemas para extraer conocimiento o un mejor entendimiento de datos en sus diferentes formas, ya sea estructurados o no estructurados, lo cual es una continuación de algunos campos de análisis de datos como la estadística, la minería de datos, el aprendizaje automático, y la analítica predictiva. A pesar de datar de los años 60 y 70, es en los últimos años cuando más repercusión está teniendo esta disciplina, en el mundo de los negocios. En este post voy a contarte cuáles son los principales conocimientos que debe de tener un científico de datos, así como cuáles son sus aplicaciones solucionando problemas reales en diferentes industrias. ¿Te interesa? Pues vamos a por ello.

La ciencia de datos y la tecnología han ido siempre de la mano, ya que esta no puede existir sin una tecnología computacional que la apoye. De hecho, “dato” es un concepto que surge en los 40, la etapa de los primeros ordenadores, con la acepción de «información susceptible de ser transmitida y almacenada en un ordenador».

A partir de ahí, la evolución de los ordenadores y su capacidad para almacenar y procesar datos han ido modelando el concepto de análisis de datos primero y de Ciencia de Datos después, aumentando el alcance de los análisis y la fiabilidad de las predicciones.

Sin embargo, la Ciencia de Datos no solo son datos y ordenadores. Esta se encuentra centrada en una figura, la del Data Scientist.

 

Principales conocimientos que debe tener un Data Scientist.

Data Scientist

Para conocer bien qué puede hacer la ciencia de datos por los negocios, antes hay que saber qué habilidades y conocimientos tienen que dominar los científicos de datos o data scientists.

Si bien no hay una definición clara y concisa, existe una aproximación realizada en 2010 por Drew Conway en la que se llega al concepto de Ciencia de Datos a partir de las áreas de conocimiento que es necesario dominar, y son estas:

#1. Hacking Skills.

Hace referencia a habilidades adquiridas para manejar diferentes tipos de datos en formatos distintos y para los que no hay un único método de integración en un proyecto de Ciencia de Datos. Son habilidades para «buscarse la vida» manejando fuentes de datos no siempre estructuradas, en busca de relaciones, predicciones o patrones útiles en un determinado sector o área de negocio.

#2. Substantive Expertise.

Atañe al conocimiento del área de actividad o el negocio de donde provienen los datos. Los mismos datos, en áreas de negocio diferentes, se manejan también de forma diferente. Por ejemplo, los datos de conducción de los coches pueden servir para diseñar estrategias de mantenimiento predictivo en un taller o para ofrecer seguros personalizados en función de la forma de conducir.

#3. Disciplinas como Machine Learning o los métodos analíticos tradicionales.

Son subconjuntos de áreas de conocimiento, mientras que la Ciencia de Datos las engloba a todas. Son piezas de un enorme rompecabezas como la Manipulación de Datos y el Análisis.

 

Sin embargo, en los últimos tiempos, un elemento nuevo ha entrado en juego: la Inteligencia Artificial. Y es que, a medida que la potencia de cálculo de los sistemas computacionales ha ido aumentando, la IA ha ido emergiendo en paralelo. Sin ir más lejos, la IA Watson de IBM se enfrentó en 2011 a personas reales en el concurso ‘Jeopardy’ usando la tecnología DeepQA (preguntas y respuestas profundas). En ella intervienen decenas de algoritmos diferentes para procesar el lenguaje natural, clasificar, buscar relaciones o categorizar la veracidad estadística de la respuesta. La IA ganó el concurso.

La “apariencia” de inteligencia emerge a partir del hardware capaz de hacer los cálculos lo suficientemente rápido como para que pareciese que estábamos ante un concursante humano. Watson usaba computación distribuida mediante Hadoop y bases de datos que se tuvieron que almacenar en memoria RAM para que la respuesta fuera rápida.

 

9 aplicaciones de la Ciencia de Datos o Data Science en los negocios.

Data Science

Los avances tecnológicos han propiciado el manejo de grandísimas cantidades de datos en tiempos muy reducidos. Esto ha facilitado del mismo modo, el poder integrar estos métodos en interfaces de usuario, haciéndolo más accesible a las personas y por tanto, a las empresas.

Esta, llamémosla, democratización de los datos, ha supuesto que su uso se vaya extendiendo a diferentes industrias y sectores, en los que está aportando soluciones rápidas y eficaces a problemas cotidianos a los que se enfrentan en esos mercados cada día.

Las nueve aplicaciones más potentes podrían ser estas:

 

#1. Ciberseguridad: identificación de ciberamenazas

La detección se realiza a partir de los datos de acceso a los sistemas y recursos de red. Se buscan patrones y se procede a dar la alerta cuando se detectan situaciones que no respondan a un patrón predefinido.

Los datos provienen de logs de actividad, con abrumadoras cantidades de datos recopilados en archivos históricos. De ellos, se extraen patrones de actividad para usarlos como referencia.

#2. Finanzas: detección de fraudes

Un proceso similar se aplica, por ejemplo, en la detección de fraudes en pagos con tarjetas de crédito. Aquí, los sistemas pueden cruzar datos de diferentes fuentes, como la actividad habitual de un cliente, junto con los «normales» de uso.

De esta forma, es posible identificar escenarios fraudulentos (tarjetas duplicadas/robadas o cobros indebidos/duplicados), paralizando o advirtiendo sobre una actividad irregular antes de que se produzca el daño.

#3. Seguros: cálculo de primas

El sector de los seguros es otro que se beneficia de la Ciencia de Datos. Analizando los hábitos de conducción mediante sensores, una empresa aseguradora puede calcular los riesgos de accidente de un cliente y ofrecer una cuota personalizada para él. Incluso puede introducir conceptos variables que dependan del análisis de sus rutinas en diferentes épocas del año.

#4. Medicina: detección de tumores y búsqueda de tratamientos

Campos como el análisis de imagen en la identificación de enfermedades son perfectos candidatos para aplicar la Ciencia de Datos. Cuando se obtienen las imágenes en un TAC, radiografía o ecografía, los sistemas de reconocimiento empiezan a ser mejores incluso que los propios especialistas humanos.

Para conseguir una tasa de acierto tan elevada, es preciso elegir y procesar decenas de miles de exploraciones para entrenar estadísticamente los sistemas de reconocimiento de imagen basados en Machine Learning Supervisado.

Otro tanto de lo mismo se aplica para el descubrimiento de nuevos medicamentos o para ofrecer tratamientos personalizados.

#5. Industria: mantenimiento predictivo o la salud de las máquinas

El mantenimiento predictivo es un ejemplo claro de aplicación de la Ciencia de Datos en la industria. Las máquinas, sistemas logísticos y demás elementos de una planta industrial integran miles de sensores que recogen datos sobre temperaturas, horas de funcionamiento, velocidades, distancias, nivel de ruido, etc.

Se generan cantidad de información que hay que preparar, filtrar, limpiar e introducir en los modelos de Machine Learning o Deep Learning para predecir fallos con antelación. Como consecuencia, se consiguen sustanciosos ahorros en revisiones periódicas o en compra de piezas de repuesto. Por no hablar de evitar que una planta de producción se pare por sorpresa.

#6. Marketing: clasificación de los clientes y las audiencias

Actualmente, la Ciencia de Datos es capaz de usar como fuentes a las redes sociales en tiempo real. De esta manera, se puede desde predecir la demanda de un producto hasta crearla a partir de ofertas segmentadas por clase social, preferencias culturales, nivel adquisitivo, género, aficiones…

En los departamentos de marketing, estos datos ayudan a confeccionar informes previos a campañas, lanzamientos o promociones.

#7. Buscadores: reconocimiento de imágenes

Valga Google Fotos como ejemplo. En esta plataforma, las fotos que subimos se analizan y clasifican automáticamente a partir de aquellos elementos que la IA de Google es capaz de identificar, ya sean coches, aviones, personas, flores, comida, animales, paisajes o lugares singulares, entre otros.

La Ciencia de Datos interviene en la elección de los mismos (imágenes) para entrenar a los modelos de Deep Learning. Para darnos cuenta de su importancia, recordemos que, cuando se pedía a Google que buscara gorilas, devolvía como resultado fotos de personas de color. Google lo resolvió inicialmente eliminando “gorila” de la búsqueda.

#8. Automatización: coches que conducen solos

Es uno de los territorios más ambiciosos de la Ciencia de Datos. No es lo mismo automatizar el aparcamiento de un coche que automatizar la conducción completa, por lo que aún queda un largo recorrido en esta vía.

#9. Energía: asegurando el suministro

En el sector de la energía, la Ciencia de Datos se aplica a diferentes áreas, como la del mantenimiento predictivo de sus instalaciones e infraestructuras y redes de distribución, o la previsión de consumo, para programar las tareas de generación energética.

También se emplea para detectar el uso fraudulento del grid ─como pueden ser enganches ilegales─, prevenir caídas de suministro o tarificar en tiempo real.

 

Como ves, la ciencia de datos es cada vez más importante y supone una ventaja competitiva de cualquier negocio, frente a su competencia, no sólo por ser más eficientes, sino porque ofrecen en tiempo real soluciones reales a quienes importan realmente, que son los consumidores.

En artyco ayudamos a los negocios a sacar verdadero partido de los datos, utilizando el Data Science como sistema dentro de nuestra oferta de Customer Intelligence. ¿Te ayudamos?

Emilio Fernández Lastra

Chief Marketing Officer

“Después de la hipoteca, el inbound marketing es la mejor
herramienta para asegurar una relación a largo plazo”

¿Te ha parecido interesante lo que has leído?

En artyco podemos ayudarte a conseguir tus objetivos

¿Hablamos?

Si, quiero

+34 916 404 150

© Artyco comunicación y servicios - Todos los derechos reservados

© Artyco comunicación y servicios - Todos los derechos reservados

Cómo determinar el Pricing a través de la Inteligencia Artificial

Cómo determinar el Pricing a través de la Inteligencia Artificial

Cómo determinar el Pricing a través de la Inteligencia Artificial

La optimización de los precios es una tarea de enorme trascendencia para cualquier empresa, ya que, mediante este, además de hacer competitiva su oferta comercial, va a incidir directamente en los beneficios de la compañía, a través del incremento o reducción del margen. El correcto establecimiento de estos precios, así como su variación a lo largo del tiempo sabiendo tener en cuenta múltiples variables, puede ser determinante para la empresa. Y una excelente manera de hacerlo eficazmente es a través de la Inteligencia Artificial. ¿Quieres saber de qué manera? Te lo cuento.

Como bien sabes, la Inteligencia Artificial o IA (en inglés artificial intelligence – AI) es llevar la inteligencia humana a una máquina, la cual es capaz de tener en cuenta muchas más variables y de una manera más rápida y eficaz, que un ser humano, para desempeñar una acción, realizar una hipótesis o sacar una conclusión, entre otras muchas cosas.

Uno de los campos en los que mayor actividad está teniendo la IA, es en el marketing, en el que empresas como Netflix, Amazon o L`Oreal están liderando en sus respectivas industrias, el uso de esta inteligencia, para sacar mayores beneficios en su cuenta de resultados.

En este aspecto, si quieres profundizar en ello, te recomiendo que eches un vistazo a este post que escribí hace tiempo sobre “Usos y aplicaciones de la Inteligencia Artificial en el Marketing” en el que te hablo de su uso en el Data Driven Marketing, la automatización de procesos, la interacción personalizada, la creación de contenidos o la publicidad programática.

Sin embargo, otro de los campos en los que más se está sacando provecho a la IA, es en la disciplina del customer intelligence, en el que se están consiguiendo grandes avances y beneficios descubriendo la “personalidad de compra” de un consumidor, gracias al volumen de datos que disponemos, los cuales trabajados correctamente con una metodología de Data Management, aplicamos una vez preparados, el Deep Learning. Este proceso, nos está permitiendo, entre otras cosas, encontrar productos a través de imágenes y no palabras clave, identificar logotipos en imágenes dentro de las diferentes plataformas sociales, o predecir las preferencias de los usuarios en cualquier eCommerce. – “Cómo hacer Customer Intelligence con Inteligencia Artificial”.

Como puedes imaginar, el Pricing es un área en el que la Inteligencia Artificial aporta múltiples ventajas. Este, más que muchos otros, se nutre de datos, muchos datos… los cuales le sirven para alimentar los diferentes escenarios de negocio. Estos datos, unidos a una tecnología que ayude a generar esa inteligencia artificial, hacen posible lo que se conoce como “nueva gestión de precios”.

Vamos a ver de qué manera podemos hacer Pricing con inteligencia artificial. El proceso para llegar a este, sería el siguiente. Vamos a ello.

 

Paso 1: Acceso y uso de las fuentes de datos

Acceso a datos para determinar Pricing

Lo primero que debe hacer cualquier empresa es definir y poner en actualidad el acceso a los datos y su integración.

Toda empresa tiene acceso a datos de diversas fuentes, tales como el ERP, el CRM, Facebook, Google… y a través de múltiples formas como pueden ser un archivo, una API o una base de datos. Toda esta información se puede almacenar en la nube, a través de plataformas como AWS o Azure. Sin embargo, ante tal cantidad de datos, tipos y plataformas, no debemos perder el foco de cuáles de estos datos necesitamos para poder optimizar nuestros precios.

Con esta filosofía, podríamos decir que los principales datos que necesitaremos analizar son:

  1. Datos transaccionales. Este es quizás uno de los datos más importantes para el pricing, ya que va directo a la cuenta de resultados y la rentabilidad de la empresa.
  2. Datos relacionados con el stock. Qué productos tenemos y cuál es la disponibilidad de estos, es fundamental para determinar el precio final.
  3. La demanda. Monitorizando y obteniendo información sobre el interés de los consumidores en adquirir nuestro producto, es decir, la posibilidad de conocer la demanda, nos ayudará a crear una política de pricing dinámico, el cual varíe en función de la demanda detectada previamente. Sectores como la aviación comercial, tienen muy desarrollada este tipo de políticas.
  4. El contexto. Este aspecto tiene que ver con cualquier evento, promoción o suceso que pueda marcar un cambio en las tendencias habituales de demanda de la marca. Un factor de contexto significativo ha sido por ejemplo la crisis del COVID-19, pero también puede ser un mundial de fútbol si eres un vendedor de ropa deportiva o el Black Friday si eres de electrónica de consumo.
  5. La estrategia. La determinación del precio, se verá enormemente influenciada por la estrategia que tenga la compañía en cuanto a posicionamiento, objetivos, política comercial, etc.

Una vez tengamos claro cuáles de esos datos pueden influir en nuestro producto y cómo podemos acceder a ellos, limpiarlos homogeneizarlos y almacenarlos, llegaría el momento de tratarlos, ¿cómo?

 

Paso 2. Creación de modelos avanzados

Analítica avanzada para Pricing

Una vez que ya tenemos establecidas las bases sobre las que trabajar el Pricing, es hora de aplicarle una capa de inteligencia de negocio y algoritmos de machine learning. En establecimiento de precios, los más destacables son:

  1. Segmentación. Gracias a la segmentación, lo que hacemos es clusterizar o trocear las múltiples opciones que nos dan los datos, como por ejemplo las relacionadas con el contexto (si está lloviendo, si son las vacaciones de verano, si es Navidad…); relacionados con el canal en el que se vende (Amazon, El Corte Inglés, tienda online propia…); en función del perfil sociodemográfico o patrón de compra del consumidor; en función del dispositivo favorito (móvil, ordenador, teléfono…); la geolocalización… y muchos más. Con Machine learning aplicado a esto mismo, nos puede permitir asignar unos precios u otros de manera inteligente, aumentando la conversión, al ser más a medida del público al que nos estamos dirigiendo, el momento y el medio.
  2. Predicción. Esta es clave para llegar a realizar un ajuste de los precios en tiempo real, o lo que se llama “precios dinámicos”. A través de modelos de regresión, por ejemplo, logramos predecir la relación entre unidades vendidas y precio, intensidad promocional, tipo de producto, perfil del cliente… Amazon por ejemplo, utiliza un algoritmo para crear sus precios dinámicos, los cuales varían en función del stock y unos competidores concretos. Según los expertos, Amazon es capaz de cambiar 2,5 millones de precios al día, ajustándolos a sus necesidades.
  3. Optimización. Esta es otra de las funcionalidades, por llamarlo de alguna manera, para aplicar el Pricing a través de modelos avanzados, es decir, optimizar maximizando la rentabilidad, teniendo en cuenta los patrones de navegación, otras transacciones, el momento actual… La alemana Blue Yonder, fundada por el profesor Michael Feindt, excientífico del CERN e inventor de una metodología única para resolver problemas complejos de optimización llamada NeuroBayes, ha conseguido generar millones de modelos de optimización en tiempo real, lo que a su vez, le ha permitido al distribuidor Morrisons evitar roturas de producto y adaptarse inmediatamente a la crisis del COVID-19.

Sin embargo, no todo se puede quedar en la capa analítica, ya que estamos hablando de negocios y como tales, debe existir una capa que trate precisamente este aspecto.

 

3. Prescripciones para el negocio

Predicción de negocio a través del Pricing

El éxito de poder hacer un correcto Pricing a través de la Inteligencia Artificial, como hemos visto, pasa por los datos, la tecnología, y como no, a través del conocimiento del negocio.

El negocio debe ser el punto de partida para saber hacia donde tenemos que ir, y el de llegada. Entre medias, está todo lo expuesto anteriormente.

En este punto, ya final, la IA debe ayudar a través de prescripciones, en los siguientes ámbitos:

  1. Fijación final del precio. A través de la integración de datos y de modelos y soluciones, la IA puede determinar en tiempo real los precios de los productos, catálogos, a la vez que aporta una coherencia respecto a los precios de otros países, otras familias de productos, etc.
  2. Fijación de descuentos y rebajas. La Inteligencia artificial puede ayudarnos a determinar cuándo poner en promoción un producto, cuándo establecer un período de rebajas y qué precio adoptar.
  3. Portfolio y mix de ventas. Una de las importantes funciones que tiene la IA en el pricing, está relacionada con la variación de precio de un producto, para que este impacte sobre otros productos de la familia, maximizando la rentabilidad de la categoría general de esos productos. Empresas como Coca-Cola han abierto un área nueva dedicada a la Gestión del Crecimiento de Ingresos, la cual está poniendo en marcha este tipo de prácticas.

 

Como has podido ver, la determinación de precios de manera automática e inteligente, a través de datos, algoritmos y tecnología es posible. Sólo es necesario conectar, por ejemplo,  los servicios de comercio electrónico más populares (Google Analytics, Magento, Prestashop, Shopify y otros), así como otras fuentes de datos internas (ERP y CRM de la empresa) y externas, y, a través de un núcleo de aprendizaje profundo (machine learning) que analiza tanto datos internos y externos, como precios fijos y estacionales, averiguaremos las causas que están originando cambios en los precios de un determinado sector, ajustándolos de forma automática y sin necesidad de intervención humana.

La estrategia de Pricing, no obstante, puede y debe ser supervisada por personas de forma manual. No obstante, el precio que propone la IA ayuda a fijar los precios, ya que además de aportar valor a los clientes, busca la mayor rentabilidad para la empresa.

¿Estás buscando automatizar procesos a través de machine learning? En artyco podemos ayudarte.

Emilio Fernández Lastra

Chief Marketing Officer

“Después de la hipoteca, el inbound marketing es la mejor
herramienta para asegurar una relación a largo plazo”

¿Te ha parecido interesante lo que has leído?

En artyco podemos ayudarte a conseguir tus objetivos

¿Hablamos?

Si, quiero

+34 916 404 150

© Artyco comunicación y servicios - Todos los derechos reservados

© Artyco comunicación y servicios - Todos los derechos reservados

Qué son los KPI inteligentes

Qué son los KPI inteligentes

Qué son los KPI inteligentes

Los indicadores clave de rendimiento o KPI son un elemento fundamental en toda organización, para conocer si se han logrado los objetivos acordados, así como para la toma de decisiones. En una compañía data driven, las personas, los procesos y la tecnología se organizan en torno a unas métricas y a estos KPI. Sin embargo, estos KPI tal y como los conocíamos están evolucionando. Por ello, en este tipo de empresas, las prioridades de datos y analíticas, así como la autoridad de la toma de decisiones, se están redefiniendo a lo que ahora se llaman KPI inteligentes. ¿Quieres saber lo que son? En este post te lo cuento a través de un ejemplo. ¿Te van los datos? Entonces te va este post.

Si estás leyendo este post, es porque perteneces a una empresa sofisticada o estás en proceso de convertir tu negocio en uno en el que los datos no son un elemento más, sino una herramienta con la que mejorar y optimizar procesos, ventas y beneficios.

Con la llegada de la tecnología y su aprovechamiento por parte de la inteligencia artificial, muchos procesos y herramientas de management que teníamos asumidas se han visto revueltas, renaciendo versiones 2.0 de muchas de ellas. Este es el caso del KPI.

Todos sabemos qué es un KPI, ¿quién no los usa a menudo en su negocio? Sin embargo, seguramente tal y como los estás usando en tu empresa ahora mismo, no es la manera que se usará en el futuro más próximo. Por qué no decirlo… en la manera en la que se está usando hoy día en las empresas más punteras tecnológicamente y empresas data driven.

Esta nueva manera de utilizar el KPI, es lo que se denomina como KPI inteligente. No, no lo busques en Internet, ya que no encontrarás apenas referencias a este concepto, ya que es un término extremadamente novedoso, el cual, si lo aprovechas ahora mismo, es decir, a partir de hoy, podrás adelantarte decisivamente a tu competencia.

Un KPI inteligente es ir al segundo nivel, pasar a ese ‘next level’ al que toda empresa quiere llegar.

¿Quieres saber qué es un KPI inteligente? Vamos a por ello.

Habitualmente, los KPI se utilizan como medida de control de objetivos relevantes para el negocio. Un KPI inteligente, sin embargo, en un entorno de trabajo de Big Data e Inteligencia Artificial, no se queda en el simple hecho de ayudar a entender a posteriori qué ha sucedido. Un KPI inteligente te ayuda a predecir para prevenir proactivamente.

Por tanto, podríamos decir que una empresa que comience a utilizar KPI inteligentes pasaría de ser una compañía reactiva a otra muy diferente: una empresa proactiva. ¿Verdad que te gusta?

Sin embargo, conseguir esto no es nada fácil. Para lograr un KPI más anticipatorio y prescriptivo se necesita que este “aprenda” de él mismo. Para ello es necesario formar una maquinaria de Data Management que permita a la organización llevar a cabo este proyecto.

Dentro del Data Management, el gobierno del dato se convierte en un elemento fundamental para el éxito, así como la arquitectura del dato sobre el que se soportará toda la información necesaria.

Vamos a ver un ejemplo claro de cómo conseguir un KPI inteligente. En este caso con la tasa de abandono. Vamos allá

 

Cómo convertir la tasa de abandono en un KPI inteligente

Tasa de abandono como KPI inteligente

Muchas veces en otros posts relacionados he escrito que, el coste aproximado de adquirir nuevos clientes puede resultar entre cinco y veinticinco veces más caro que mantener los actuales.

En base a este dato, se establece el objetivo vital para muchas organizaciones, de aumentar la retención de sus clientes o reducir al mínimo la tasa de abandono.

Esta retención de clientes es crítica para cualquier negocio, si quiere garantizar la rentabilidad del mismo. Sin embargo, son las empresas de suscripción SaaS, financieras o de telecomunicaciones las que son especialmente sensibles a ello, siendo una prioridad estratégica reducir esa tasa de abandono.

Vamos a ver cómo empezamos… Lo primero de todo es comenzar con el gobierno de los datos. Este es realmente clave, ya que debemos distinguir entre la supuesta tasa de cancelación de clientes, o cuando un cliente deja de interactuar con la marca, y la tasa de cancelación de clientes absoluta, es decir, cuando un cliente cierra una cuenta o deja de usar un servicio.

Como hemos hecho con esto, habría que hacerlo con otras tasas como la reactiva y la prospectiva, las cuales determinan si un cliente se ha perdido por una mala experiencia, un cargo inesperado, un mal servicio, etc. Todo esto es más complicado de predecir, no obstante, es necesario poder correlacionar las experiencias negativas de los clientes con la propensión a la tasa de cancelación de clientes. De este modo, conoceríamos cuál es el comportamiento gradual que lleva a un cliente a la deconexión definitiva con la marca.

A través de analítica, de este modo, se podrían identificar diferentes grupos y segmentos que representen un mayor riesgo de fuga y así poder invertir en acciones sobre ellos.

Es habitual en estos casos, una vez tenemos una tasa de cancelación de clientes predictiva, alinearla con el KPI de CLV (Customer Lifetime Value), ya que suele ser necesario incorporar el valor de los ingresos a largo plazo y el potencial de ganancias que ese cliente aportaría.

Con esta incorporación, conseguimos alinear la urgencia del conocimiento circunstancial con la aspiración estratégica a largo plazo.

Para lograr esto, entra en juego otro elemento de Data Management que es imprescindible: la arquitectura de datos. Estos procesos de arquitectura de datos nos ayudan a conectar digitalmente el KPI, los datos, y la toma de decisiones estratégicas. Empresas como Amazon, Google o Netflix tienen esto muy claro, utilizándolo en su día a día, gracias a la gran digitalización de su negocio.

Gracias a esa arquitectura del dato y el gobierno de los mismos (si quieres saber más sobre ello, te invito a leer el post que escribí sobre: “Qué es el Data Governance”) se logra convertir los datos en un recurso estratégico.

 

La importancia del Data Governance para generar KPI inteligentes y decisiones automatizadas

El Data Governance en los KPI inteligentes

Si has leído hasta aquí, te habrás dado cuenta de que el gobierno correcto de los datos es fundamental para poder manejar de una manera óptima un KPI inteligente, ya que este es un importante medio para facilitar el KPI final.

El gobierno de datos amplía y recoge los análisis. En otras palabras, la finalidad y calidad de los análisis (sean regresiones crudas o clasificaciones de los tipos de aprendizaje profundo más sofisticados) dependen de la calidad, la cantidad, la exactitud y el origen de los datos, entre otros factores.

Y es que, cuando disponemos de un Data Governance correcto, y funcionamos con KPI inteligentes, los cuales son dinámicos, debemos pensar en una toma de decisiones que vaya a la misma velocidad que los KPI, es decir, una toma de decisiones automatizada, a través de máquinas. Te explico un poco a qué me refiero.

Una vez entras en la Era del KPI inteligente, debes poner la mente si o si en la toma de decisiones automatizada, es decir, aspirar a optimizar los KPI otorgando derechos de decisión a los algoritmos basados en datos que, técnicamente, aprenden más rápido, mejor, más barato y con más escalabilidad que cualquier ser humano.

Es más, una toma de decisión genera a su vez más datos, cambiando de nuevo la forma de medir el rendimiento. Todo ello en un ciclo infinito y cada vez más ágil.

Volviendo al caso de ejemplo anterior de la tasa de abandono, podremos definir cuándo realizamos una acción de manera automatizada y cuando a través del factor humano, en función de los resultados que nos de ese KPI inteligente. Por ejemplo, para perfiles de alto valor potencial, se pueden personalizar de una manera más dedicada de como lo podría hacer una máquina, algo que no haríamos en el caso de un perfil de valor más bajo.

 

Como ves, el dato, la tecnología y la inteligencia artificial están generando nuevas maneras de entender los procesos de negocio. Lo que ahora mismo suena complicado, en unos pocos años estará perfectamente asumido por cualquier empresa que quiera liderar su mercado, siendo necesario contar con un socio estratégico y operativo que permita afrontar los retos del dato y las decisiones basadas en información o data driven.

Si estás buscando dar ese salto, te invitamos a que te pongas en contacto con nosotros y llevarte hacia el mundo data driven.

Emilio Fernández Lastra

Chief Marketing Officer

“Después de la hipoteca, el inbound marketing es la mejor
herramienta para asegurar una relación a largo plazo”

¿Te ha parecido interesante lo que has leído?

En artyco podemos ayudarte a conseguir tus objetivos

¿Hablamos?

Si, quiero

+34 916 404 150

© Artyco comunicación y servicios - Todos los derechos reservados

© Artyco comunicación y servicios - Todos los derechos reservados