Del small data al big data | Artyco

Del Big Data al Small Data

Te descubrimos los datos que realmente importan y te generamos cuadros de mando
pensados en facilitar la toma de decisiones

¿Cómo lo hacemos?

barra-250

Llevas años escuchando la importancia del Big Data para poder hacer campañas más eficaces, sin embargo, no logras sacar provecho de tanta información de tantos canales. Te estás perdiendo en mares de registros, datos y cifras, y no logras sacar conclusiones de todo ello. Sin embargo, crees firmemente en que puedes conseguir unos grandes resultados si consigues aprovecharlos.

 

¿No sabes por dónde empezar?

En Artyco llevamos más de 20 años trabajando con datos de CRM de compañías del primer nivel internacional, ayudándoles a capturar información útil, almacenarla de forma correcta, analizarla y extraer conclusiones de ella, con el objetivo de basar la toma de decisiones de nuestros clientes en datos y no en intuiciones.

Nuestra metodología

barra-250

Recogida y Almacenamiento de Data

Creamos el entorno idóneo para tus Big Data, de cara a poder tratarlo de una manera rápida y sencilla, y poder extraer de él información útil.

Cuadros de Mando

Con el Small Data y los modelos predictivos, diseñamos cuadros de mando y conclusiones que te ayuden a tomar decisiones más seguras y eficaces.

Customer Intelligence

Analizamos los datos del CRM, clasificamos a tus clientes y creamos segmentos que te sirvan para diseñar estrategias eficaces basadas en el Customer Centric.

“Small Data: Sólo unos pocos de tus datos te generan las mayores conclusiones para la toma de decisiones”.

El Big Data te aporta el poder encontrar correlaciones. Sin embargo, cuando necesitas llegar a medir emociones, debes tirar de Small Data. Y es esta Data la que te permite conocer mejor los gustos, preferencias y matices que diferencia a unos y otros clientes de cara a personalizar al máximo tus comunicaciones. Si estás buscando esto, el Small Data y Artyco te pueden ayudar.


¿Quieres ver cómo ayudamos a MAHOU SAN MIGUEL a conocer mejor los gustos e intereses de sus seguidores en RRSS?


SABER MÁS

El blog del customer centric, de Artyco

barra-250

-Últimos post-

Principales métricas y KPIs para el sector Hotelero

El turismo en España supone el 11,7% del PIB, según datos del 2017, siendo el sector hotelero, uno de los más pujantes en la economía española, y por consecuencia, en la economía internacional, estando a la cabeza dentro de esta industria. Como una de las industrias pioneras, también quiere estar a la vanguardia en cuanto a analítica, seguimiento y control, aplicando la inteligencia de negocio a sus procesos. Adquisición, estancia, experiencia de huésped, lealtad, satisfacción… Si estás buscando cómo medir, qué analíticas utilizar y cómo valorar cada punto crítico dentro de tu Hotel, este post te puede ser tremendamente útil para conocer los KPIs para el sector Hotelero. Vamos con ello.

Todos somos conscientes hoy día, que si no medimos somos incapaces de poder mejorar. En un sector en el que se busca continuamente la excelencia como en el hotelero, esta medición se hace prácticamente inevitable. Sin embargo, ¿por dónde empezamos?

Los avances tecnológicos están brindando a la industria hotelera nuevas formas de medir y optimizar su rendimiento. Es por eso que hoy, es más importante que nunca, que los hoteles tengan bien controlados sus KPIs y utilicen esa inteligencia para optimizar sus operaciones y aumentar la rentabilidad. Gracias a esa tecnología, podemos medir el rendimiento de los hoteles de maneras que antes estaban fuera de nuestro alcance.

Antiguamente sólo se medían métricas relacionadas con la ocupación. ¿Sigues midiendo de este modo? Si sigues así, debes saber que ahora es posible obtener KPIs relacionados con las operaciones diarias, el desempeño financiero, la comercialización o el servicio al cliente.

Sin embargo, antes de meternos a definir cada una de ellas, o al menos las mas importantes, hay que resaltar qué es y qué no es un KPI, para que sepas diferenciarlo de una métrica.

 

Qué es y qué no es un KPI

Qué es un KPI y qué no es en Hoteles

Los KPIs son métricas que miden variables como ingresos, gastos, número de visitas… A diferencia de las métricas, los KPIs deben de cumplir con un requisito: tener una relación directa con los objetivos de negocio de la empresa.

De este modo, lo primero que se debe de hacer es definir los objetivos, y en función de estos, seleccionar los KPIs que nos mostrarán si estamos alcanzando esos objetivos o no. Una vez tengamos claro todo esto, sería el momento de definir las métricas que son las que nos ayudarán a ir conociendo en el día a día cuál es el estado y el camino que están llevando nuestras acciones, de cara a modificarlas o replicarlas.

Por tanto, un KPI es una métrica clave para conocer si estamos consiguiendo nuestros objetivos, y no es una métrica intrascendente, como podría ser el tiempo medio en nuestra página web de los usuarios.

Ahora que ya sabes qué es un Kpi y qué no lo es, paso a enumerarte qué KPIs para el sector Hotelero son los más interesantes. Algunos de las principales KPIs para el sector Hotelero, que te pueden venir muy bien para que los tengas en cuenta en futuros análisis son estos.

KPIs para el sector Hotelero

KPIs para el sector hotelero

Dentro de las métricas y KPIs más usados en la industria Hotelera, podemos destacar los siguientes, los cuales te ordeno por carácter más financiero, y por último de Guest Experience, algo que está marcando la diferencia en el sector Hotelero entre quienes lo saben gestionar y quienes no.

 

Entre las métricas más relacionadas con las finanzas del Hotel, tenemos:

 

#1. Average Daily Rate (ADR) o Tarifa Diaria Promedio.

Es una ratio que ayuda a conocer el promedio de ingresos por habitación. Este es muy sencillo de obtener. Sólo tienes que dividir el total de ingresos de las habitaciones, por el total de habitaciones ocupadas.

La fórmula para calcularlo sería la siguiente:

 

ADR = Ingresos a través de las habitaciones / Número de habitaciones vendidas

 

Aunque el ADR te ayuda a conocer de qué manera se están vendiendo las habitaciones del Hotel, no tiene en cuenta las habitaciones vacías o que no se han logrado vender, no llegando a ser del todo válido para conocer el rendimiento general de la propiedad.

Este KPI funciona mucho mejor como métrica que ayuda a ir viendo cuál está siendo el rendimiento de manera continua. También es especialmente útil para compararlo con el ADR en otros periodos de tiempo y analizar así su evolución.

Esta métrica es importante porque es particularmente útil para la previsión de la demanda y el marketing predictivo. De hecho, ADR ayuda a los hoteles a predecir tendencias estacionales, ajustar sus precios en consecuencia y maximizar los ingresos por habitación.

 

#2. Revenue per available room (RevPAR) o Ingresos por habitación disponible.

Es una de las métricas más importantes dentro del sector Hospitality. Esta mide el porcentaje de ingresos por habitación, sin tener en cuenta otros ingresos aparejados a la pernoctación como pueden ser ingresos por venta de tours, servicio de habitaciones, etc.

Existen dos tipos de fórmulas:

  • RevPAR = Ingresos (precio x habitaciones vendidas) / Habitaciones disponibles
  • RevPAR alternativa = ADR x Occ % (occupacy), donde OCC = Habitaciones vendidas / Habitaciones disponibles

Este está considerado como uno de los cálculos financieros más importantes de cualquier hotel para ver cuántos ingresos han obtenido en un período de tiempo determinado.

Cuando se lleva a cabo un análisis, las cifras de RevPar se pueden comparar con RevPar del hotel durante el mismo período de tiempo de los años anteriores o con su conjunto de datos. De este modo puedes comprobar la tendencia que está llevando tu negocio.

Gracias a esta ratio, podemos saber cómo de exitosa es nuestra tarifa para llenar las habitaciones disponibles, sin embargo, no puede servir de comparativa con otras propiedades de la cadena, ya que no se tiene en cuenta la cantidad de habitaciones.

 

#3. RevPAR mínimo para obtener beneficios.

Este te ayudará a conocer cuál es el RevPAR mínimo que deberías lograr para conseguir beneficios en tu Hotel. Esto es imprescindible para poder establecer una estrategia de revenue management que sea acorde a las necesidades de tu Hotel. Para obtener una estimación que te permita saber dónde está el mínimo viable, divide todos los gastos que genera el Hotel, entre el total de habitaciones. Si el RevPAR supera esa cantidad, será señal de que estás obteniendo beneficios.

 

#4. Duración media de la estancia.

Esta métrica es muy útil para conocer cuánto tiempo de media están tus huéspedes en tus habitaciones. Se calcula dividiendo el total de número de noches de ocupación por habitación, entre el número de reservas. Como es lógico, un resultado alto es positivo, mientras que otro bajo, puede ser considerado como negativo, ya que puede suponer un aumento de los costes. Por ejemplo, no tiene el mismo coste para el Hotel, tener a una persona en una estancia de una semana, que 7 huéspedes a una noche por día de estancia a lo largo de esa misma semana en esa habitación.

Esta métrica ayuda tremendamente a la hora de organizar y optimizar la ocupación del Hotel.

Si la duración media de la estancia te indica que durante un cierto período de tiempo estás teniendo más estancias de más de una noche, de lo normal, lo aconsejable sería aumentar tu tarifa de una sola noche, ofreciendo descuentos para estancias de más de dos noches.

La Duración media de la estancia o Average Length Of Stay (LOS) = Total de noches ocupadas / Número de reservas

De este modo, si has ocupado tus habitaciones durante el mes de mayo, en 111 noches en total, teniendo un total de 37 reservas durante ese mes. 111/37 = 3 noches de estancia media.

 

#5. GOPPAR.

Es otra de las métricas clásicas para conocer la ganancia operativa bruta por habitación disponible. Esta métrica proporciona una visión mucho mejor que la del RevPAR que hemos visto en el punto 2, ya que considera no sólo los ingresos generados, sino también los costos operativos incurridos para generar esos ingresos.

La manera de calcularlo es a través de restar los gastos del Hotel con los ingresos del mismo, y dividiendo lo que sale por el número de habitaciones disponibles.

Sin embargo, esta métrica no tiene en cuenta la combinación de ingresos del hotel, no permitiendo una evaluación precisa de los ingresos generados por la habitación. Sin embargo, sí demuestra la rentabilidad y el valor de una propiedad hotelera en su conjunto, por lo que es tremendamente útil.

 

Entre las métricas más relacionadas con la gestión del Guest Experience o experiencia del huésped, tenemos las siguientes:

 

#1. Online Rating.

Todos somos conscientes de que la experiencia no sólo se tiene a través del mundo real, sino que, además, se deja ver a través del mundo digital. En la Era de Internet y las RRSS, los clientes comparten la experiencia que han tenido en el Hotel en foros, plataformas sociales y blogs especializados, siendo necesario que el Hotel sepa monitorizar esos comentarios, además de medirlos.

De este modo, es obligatorio que cualquier Hotel sepa trasladar esos comentarios sobre su propiedad, en métricas de experiencia de huésped.

Para ello, es necesario monitorizar sus calificaciones y comentarios en plataformas de reservas online y RRSS, utilizando esos comentarios para mejorar sus procedimientos operativos, así como la experiencia en general de sus huéspedes.

Piensa que esos comentarios afectan de una manera muy directa a las futuras reservas de tu Hotel, siendo imprescindible para poder servirte de ellas, conocerlas, gestionarlas de la manera adecuada, y revertirlas a tu beneficio en el caso de que sean negativas.

 

#2. Satisfacción de cliente.

El problema que tienen las calificaciones de los huéspedes en Internet, es que se hacen a posteriori de haber abandonado el Hotel, siendo muy complicado para los Managers del Hotel revertir la situación, a no ser que sean muy diestros a la hora de manejar la relación con estos huéspedes en el entorno digital.

Para solucionar esto, lo ideal es poder programar encuestas de satisfacción de cliente una vez vayan a hacer el check-out. Estas encuestas nos pueden ayudar a conocer con adelanto cuál ha sido la Guest Experience de nuestro huésped, de cara a poder actuar sobre él antes de que plasme su comentario o calificación negativa en La Red. Esto lo puedes hacer, ofreciendo alguna oferta o regalo en su próxima visita, o simplemente dándole un trato especial y mostrando un interés real por la situación vivida y qué se va a hacer al respecto.

Las preguntas deben de estar diseñadas para obtener unas respuestas específicas que nos permitan obtener unos resultados en forma de KPI.

 

#3. Índice de fidelización del cliente.

Existen muchos indicadores para medir el grado de fidelización de un cliente, sin embargo, quizás el más útil para un Hotel, es el NPS o Net Promoter Score.

Esta métrica nos va a medir la lealtad de un huésped, pronosticando su comportamiento cuando se realiza una acción determinada.

La forma de calcularlo es a través de una encuesta en la que les tienes que preguntar una vez han dejado el Hotel o en el proceso del check out, si recomendaría el Hotel a algún amigo o familiar, puntuando de 0 a 10.

De aquí te saldrán 3 grupos de huéspedes:

  • Los promotores (con puntuaciones entre 9 y 10). Estos son lo más satisfechos, leales y quienes debes considerar como prescriptores de tu Hotel.
  • Los pasivos (con puntuaciones entre 7 y 8). Son clientes satisfechos, pero que no están especialmente entusiasmados. Si no cuidas a este tipo de huéspedes, no volverán a ninguno de tus Hoteles, a no ser que les interese por precio.
  • Los detractores (con puntuaciones de 0 a 6). Estos son los clientes verdaderamente insatisfechos, y con los que corres peligro de que dañen la imagen de tu Hotel en Internet.

Para calcular el NPS total, sólo tienes que restar el porcentaje de promotores menos el de detractores. El resultado oscilará entre -100 y 100. Si tu resultado es positivo, es que tienes un nivel de lealtad y fidelidad bueno. Si supera los 50 puntos, es que rozas la excelencia.

 

Por supuesto hay muchísimas más métricas y KPIs, sin embargo, creo que estas son las más significativas para ver a grosso modo. En Artyco llevamos décadas trabajando con métricas y KPIs para diferentes sectores, las cuales ayuden a nuestros clientes a mejorar sus procesos y sus comunicaciones, y en definitiva, para que sus clientes sean más fieles y se conviertan en prescriptores de la marca. ¿Quieres que te ayudemos en tu Hotel? Contacta con nosotros.

¿Quieres tener control sobre tus KPIs?

Te ayudamos a definir las métricas KPIs para tu Hotel, y te damos asesoramiento con modelos predictivos y cuadros de mando personalizados.

Cómo utilizar la analítica en el sector Retail

Todos hemos leído u oído acerca del continuo cierre de tiendas físicas. De hecho, en USA debido al sobredimensionamiento de estas respecto a la relación tienda-número de habitante, está suponiendo que esto se esté dando cada vez más. Todo esto, está implicando que muchos de estos retailers estén derivándose hacia el mundo online, pero no les terminan de salir los números. ¿Por qué? Porque están utilizando métricas anticuadas para valorar la conveniencia o no de sus puntos de venta. En este post os voy a contar qué está sucediendo y qué analítica utilizar para ser un Retail inteligente.

En el año 2017 se cerraron un total de 7.000 tiendas en Estados Unidos. ¿Retail Apocalipse? Nada más lejos de la realidad. El número de tiendas por persona en Estados Unidos está entre 15 y 20 veces por encima de la de cualquier otro mercado desarrollado mundial. La economía de mercado ha actuado y por tanto ha ajustado el número de puntos de venta a la cantidad idónea, pero ¿se están cerrando las tiendas físicas adecuadas?

Lo cierto es que el tráfico de clientes a los Centros Comerciales ha ido decreciendo a lo largo de los últimos años. Del mismo modo, también han ido decreciendo los márgenes.

Con estos datos, el justificar la continuidad de tiendas que no cumplen con las expectativas de venta, se complica. La consecuencia, el cierre de aquellos puntos de venta que no son a priori rentables.

Sin embargo, y por desgracia, la decisión de qué tienda cerrar, suele ser muy desafortunada, incidiendo de manera directa en el negocio del retailer, y afectando de manera negativa, aún más que si la mantuvieran.

Esto es debido a que la mayoría de las empresas del sector están utilizando métricas anticuadas para valorar si una tienda debe cerrarse o mantenerse abierta. La mayoría de ellas siguen usando los análisis de tendencias, y la rentabilidad de esa tienda, sin tener en cuenta variables de negocio generales y la influencia que pudiera tener esta en otros canales de venta, como el online.

También, y debido a todo esto, pasan por alto oportunidades valiosas para expandir su presencia en el mercado y desbloquear la falta de crecimiento.

¿Por qué empezó a cambiar todo?

 

Internet como impulsor de un nuevo paradigma en el Retail

Internet nuevo paradigma Retail

Internet lo cambió y lo está cambiando todo. Quizás en la industria del Retail se ha experimentado más paulatinamente, fundamentalmente por la falta de confianza inicial de los usuarios en la compra online. Sin embargo, ahora, después de los últimos datos sobre eCommerce que hemos obtenido en España, todo hace suponer que el sector va a experimentar un profundo cambio.

Y uno de esos cambios está en el modo en el que los usuarios interactúan con los puntos de venta. Existe una tendencia cada vez mayor de ir a las tiendas físicas a ver los productos, como si fuera un show room, para luego adquirirlos tranquilamente y sin esperar colas desde casa a través del ordenador. Esto es lo que se conoce como showrooming.

Por otro lado, también existen otro tipo de individuos que actúan de modo inverso. Es decir, ven los productos de manera online, como si fuera un catálogo virtual, para luego ir a probárselo y comprarlo a la tienda física. A este concepto se le denomina webrooming.

Estos y otros muchos hechos, deberían hacer recapacitar a los retailers para cambiar sus métricas de medición enfocadas a decidir si una tienda debe seguir o si ha llegado el momento de cerrarla.

Algunos retailers más avanzados ya están trabajando en ello al darse cuenta que los canales han variado y que los customer journeys han evolucionado. Son algunos los que están intentando a través de la analítica y herramientas sofisticadas de recogida de datos y análisis, encontrar el recorrido real que hacen los diferentes consumidores desde que ven su marca, hasta que la compran.

Para ello, están incidiendo poderosamente en nuevas métricas, metodologías y estudios como:

  1. Customer Journey Maps.

El diseño y construcción de Customer Journey Maps (si no sabes lo que son, te recomiendo que eches un vistazo a este post que escribí sobre Qué es y cómo diseñar un Customer Journey Map), permite conocer al detalle cómo se comportan sus clientes con su marca en todo el proceso de compra, así como su experiencia de compra. Esta metodología les está permitiendo conocer de qué manera interactúa el consumidor con la marca y con los diferentes players relacionados con la compra de sus productos o servicios a lo largo de todo el journey. De este modo, no se cierran en la única posibilidad de que, por ejemplo, por haber sucedido una compra en el mundo online, sea este el que ha generado todo el proceso de compra, o al revés.

  1. Modelos de atribución.

Otro método que se utiliza, son los modelos de atribución, los cuales te ayudan a conocer o asignar la conversión a un partner o atribuir en qué porcentajes han influido las diferentes acciones en la conversión final. Si quieres profundizar un poco más en los modelos de atribución, te dejo este post sobre “Qué son los modelos de atribución y cuáles utilizar”.

  1. Analítica geoespacial.

Muchos retailers se han percatado de la particularidad que puede tener un punto de venta concreto, más allá de la cuenta de resultados propia de la tienda, y están desarrollando estudios diferenciados por tienda física en los que se tiene en cuenta una gran cantidad de factores, cobrando protagonismo el factor omnicanal entre todos los demás. Para ello, la analítica geoespacial ha adquirido una gran importancia.

La analítica geoespacial, no es otra cosa que un análisis de datos profundo a través de polígonos espaciales geográficos, es decir, la ubicación. Mas adelante te contaré un poco más sobre ello. Antes, vamos a ver qué sucederá y cómo aplicar esta analítica.

 

El futuro del Retail y cómo hacer uso de la analítica

El futuro del Retail y su analitica

Como podrás suponer tras la lectura, estamos muy lejos del Retail Apocalypse. Sin embargo, si que estamos inmersos en un profundo cambio en el que habrá que redefinir la estructura que se consideraba lógica del sector. Ahora intervienen muchos más players, más canales, y mucho más complejos.

Se estima que en Estados Unidos el 75-85% de las ventas, seguirán siendo a través de las tiendas físicas en el 2025. Este dato no hace otra cosa que confirmar que las tiendas físicas no desaparecerán como mucha gente predice. Sin embargo, las tiendas físicas se tendrán que transformar en otro tipo de espacio, quizás no focalizado en la venta inmediata, y sí en crear experiencias y facilitar la venta a través del canal en el que se sienta más cómodo el consumidor. Para ello es necesario definir estrategias customer centric y esto sólo se puede conseguir a través de una cultura profunda del dato, sabiéndolo recoger, posibilitando su transformación en información, y lograr convertirlo en un mayor conocimiento del consumidor.

De este modo, la tienda física será un continente de experiencias relacionadas con la marca, un punto de recogida de compras online, y de devoluciones, un lugar en el que grupos de amigos pasen el rato, prueben productos y se hagan selfies los cuales compartan en el momento en las redes sociales, o un destino para aquellos que busquen inspiración. Con este nuevo concepto de tienda, es imposible realizar un análisis centrado en el simple hecho de si la tienda obtiene beneficios o no, ya que esta contribuye de otra manera a la marca, y a las ventas generales de la compañía.

Los nuevos avances respecto a analítica y Big Data, nos están permitiendo conocer cuál es la repercusión global, tanto positiva como negativa de la tienda en cuestión, así como saber de qué manera influye una tienda determinada en el negocio general de la compañía.

A continuación, puedes ver un gráfico ilustrativo de ejemplo sobre cómo intervienen los diferentes canales en las ventas de un retail tipo. Datos que se deben tener en cuenta para conocer la repercusión que tiene ese punto de venta.

Analítica en Retail

Todos sabíamos que una tienda física de por sí, ya es un elemento de marketing similar a un spot publicitario (véase el caso de Zara), ya que está transmitiendo un concepto de marca a una audiencia, representada por todas aquellas personas que entran en el espacio físico, y aquellas que pasan por delante de él. Sin embargo, hasta ahora, no se habían aventurado a conocer cuál podía llegar a ser su repercusión, ya que era difícil de medir.

Sin embargo, con la llegada de internet, y la venta online ya madura en la mayoría de la sociedad desarrollada, no es tan necesario conocer medidas entorno al branding y el awareness, como saber hacia qué otros canales de venta dirigen dichas tiendas físicas, y viceversa.

Una investigación de McKinsey sugiere que “el halo de comercio electrónico de una tienda puede representar del 20 al 40% de su valor económico total”.

Durante décadas, los retailers disponían de diferentes métricas, tales como ventas, información demográfica, tendencias del mercado e información sobre satisfacción de sus clientes. Hoy día, gracias a los nuevos sistemas de recogida y análisis de datos, los retailers disponen de información sobre comportamiento, intereses y hábitos de sus consumidores, como nunca antes hubieran imaginado.

Los diferentes medios sociales, o el Marketing WiFi, son algunas de las vías a través de las cuales se puede conseguir este tipo de información de los consumidores.

Retailers mucho más avanzados están comenzando a utilizar datos geoespaciales, con el objetivo de tener un análisis mucho más profundo de todo lo que ocurre alrededor del punto de venta. Estos datos son propiedad de una tercera empresa, la cual sirve a través de una herramienta de explotación, dicha información para su análisis. Los datos que ofrecen incluyen desde información relacionada con el marketing, hasta de ventas o finanzas, la cual permite al retail hacer un análisis mucho más profundo de quién hay alrededor de su punto de venta, cómo se comporta, cómo compra y cuál es su capacidad.

La combinación de técnicas geoespaciales avanzadas y machine learning, aplicadas a datos de vanguardia sobre el comportamiento del consumidor, está desatando nuevas y poderosas perspectivas para los minoristas. En particular, está ayudando a los retailers a tomar mejores decisiones sobre la expansión o la contratación de sus redes de tiendas.

Por ejemplo, si hay un punto de venta en concreto que está funcionando especialmente bien, a través de estos análisis geoespaciales, se busca un gemelo (un lugar en el que se reúnan las mismas condiciones que en el punto de venta objeto de éxito), y se estudia la posibilidad de abrir una tienda allí.

También les ayuda a desarrollar planes de acción a nivel de tienda para mejorar el rendimiento. Además, algunos minoristas están usando estas ideas para movilizar a su fuerza de ventas y priorizar sus inversiones.

El análisis geoespacial funciona de tal forma: Un equipo de Data analysts crea un modelo analítico ad-hoc para la problemática y los objetivos de la marca, juntando además, información externa e interna. Tras testar cientos de variables, se utilizan técnicas de machine-learning geoespacial para identificar cuáles son los principales factores positivos y negativos que afectan a las ventas del punto de venta, en función del código postal.

Basándose en esos datos, se podría crear un modelo predictivo para conocer cuáles serían las ventas en función del código postal o sección censal de implantación de una tienda y comparar la potencialidad de venta. ¿Analítica del futuro? No, analítica real y que se está utilizando hoy día.

 

En Artyco creemos firmemente en los datos, y estamos convencidos que estos datos sólo tienen sentido si son para convertirlos en información útil y esta información en conocimiento válido para poder tomar decisiones de negocio. ¿Hablamos?

¿Quieres crear una analítica para tu Retail?

Te ayudamos a definir tus métricas y KPIs y los sistemas más modernos de analítica para que puedas tomar decisiones.

Cómo convertir los datos de Marketing en un activo de negocio

Sin duda, el marketing es el área en donde se mueve una mayor cantidad de datos. Con Internet como multiplicadora de información, y con la presencia de mayores vías para conocer cada vez más el comportamiento de las personas en el mundo offline, esa cantidad de datos de marketing es cada vez más asombrosa, pero ¿se están gestionando y utilizando correctamente? En este post quiero profundizar en la importancia de saber recoger y almacenar los datos de marketing adecuados para la toma de decisiones, y cómo hacer para que sean un activo de negocio. ¿Te interesa?

Hoy día, disponer de datos no es un problema. La dificultad está en saber de dónde recoger aquellos que te interesan, así como centrarte sólo en los que son críticos para lo que necesitas analizar. Ni más, ni menos.

Disponer de una herramienta que te ayude a gestionarlos y sacarles provecho, a priori, tampoco parece un problema, sin embargo, la mayoría de las empresas, ante el gran desembolso que supone una herramienta de este tipo, esperan que les aporte el suficiente conocimiento e insigths que les permita tener una contraprestación directa en su negocio. Y la verdad es que este hecho no se está produciendo en muchos de los casos.

Y la verdad es que la mayoría de las empresas invierten dinero en la recopilación de datos de marketing y su almacenamiento, sin embargo, una vez los tienen, no llegan a más con ellos, ya que no tienen una estrategia definida respecto a estos.

Es curioso que, realmente es el tratamiento de esos datos lo que va a aportar verdadero valor, haciendo de esa empresa, una compañía competitiva.

Situación actual de las empresas en cuanto al tratamiento de sus datos de marketing

Tratamiento de datos de marketing

La falta de inversión bien dirigida, el reducido conocimiento y la escasez de una cultura sobre los datos, hace que la mayoría de las empresas hoy día, no estén aprovechando correctamente los datos de marketing de los que disponen. A continuación, te expongo las principales situaciones que se dan en la mayoría de las empresas, en cuanto a los datos.

  1. Los silos de almacenaje de datos están sin conexión. El mayor problema al cual se están enfrentando la mayoría de las empresas que comenzaron hace tiempo su andadura en la recopilación de datos, es que han invertido grandes cantidades de dinero en herramientas para que actuaran como silos de almacenaje de datos, los cuales no disponen de la posibilidad de realizar combinaciones válidas de los unos con los otros. Al final tienen información valiosa distribuida en diferentes bases de datos, las cuales no pueden cruzar para analizar esa Data en global.
  2. CRMs desfasados. Aquellas empresas que implantaron un CRM, ahora en la Era Digital se han dado cuenta que ese CRM está totalmente desfasado respecto a su negocio tal y como es hoy día. Estas herramientas se han convertido en meras bases de datos de clientes, las cuales no están centradas en sacar valor de estos, no permitiendo introducir información en los nuevos canales que se han ido creando y en los cuales están interactuando cada día más.
  3. Falta de cultura de datos de los empleados. Otro gran problema al cual se están enfrentando las empresas, es la falta de cultura de datos de sus integrantes. Para la mayoría de los empleados de una empresa, los datos no son el core de su negocio, basando el éxito o fracaso de todo lo que hacen, en los resultados trimestrales, sin llegar a pensar a largo plazo y sin centrarse en el valor de los clientes a lo largo del tiempo.
  4. No evolucionar en la explotación de datos. Por lo general, las empresas que ya comenzaron a explotar sus datos repiten una y otra vez los mismos procesos, sin llegar a pensar en evolucionarlos.
  5. No tener como foco la marca. La mayoría de las personas que trabajan con datos, se centran en entregar los informes a su jefe. Para ellos, ese es uno de sus principales objetivos, cuando en lo que deberían de pensar es en hacer crecer la marca a través de sus reportes y las conclusiones que de ellos sacan.
  6. Tener una visión ‘campaign centric. Las empresas pierden mucho tiempo y dinero en únicamente medir los resultados de las campañas, y perdiendo de ese modo, la visión customer centric, que es a donde debería de tender cualquier empresa que quiera triunfar. Esa obsesión por conocer cómo ha funcionado una campaña, hace en muchos casos, que no se preste la suficiente atención a conocer quién es el cliente, qué quiere, y cómo lo quiere.
  7. Falta de evolución. Cada año se empieza desde cero las campañas, sin tener en cuenta esos resultados medidos y qué se ha podido aprender de ellos. Por lo general, esos datos de marketing quedan en el informe pertinente como una tarea más y no se tienen en cuenta a la hora de planificar el siguiente año, y evolucionar.

Como ves, a pesar de que ya hay muchas empresas que son conscientes del potencial de los datos para su negocio, aún no le están sabiendo sacar todo el jugo que podrían sacarle. Sin embargo, tiene fácil solución. Vamos a por ella.

 

4 Tips para sacar provecho a los datos de marketing en beneficio del negocio

Tips para datos de marketing

Parece complicado, pero en el fondo no lo es tanto. Muchas veces, aplicando un poco de lógica y sentido común, tras dar un paso atrás para mirar con perspectiva la situación, todo se ve de una manera más sencilla.

Como todo se ve mejor por puntos, a continuación, te voy a ir nombrando aquellos que considero son básicos para poder conseguir dar la vuelta a tu problema con los datos de marketing y convertirlos en un activo, en lugar de un pasivo para tu negocio. Son estos:

 

#1. El lugar y la manera en la que almacenas los datos es primordial.

El almacenaje de datos es como los cimientos de una casa. Para que toda tu estrategia de datos tenga éxito, el lugar donde se almacenan tiene que cumplir con una serie de requisitos. El principal de todos ellos es que todos esos datos estén en un mismo lugar, y si eso no es posible, que al menos la empresa pueda tener acceso a ellos.

Muchas empresas comenzaron almacenando sus datos en CRMs antes de que llegara todo el ‘boom digital’. Tras ello, se lanzaron a la publicidad online, a través de la cual se fueron generando cantidades de datos sobre sus clientes en cuanto a navegación, intereses, clics, etc. Dicha información se recogía y almacenaba bien en las agencias de publicidad online, bien en DMPs (Data Management Platforms) o bien en empresas intermediarias que han creado redes de conexiones entorno a los datos, con el objetivo de venderlos a terceros. Justamente esa información es la que tiene más relación con el marketing, y la más complicada de obtener. Para ello, es necesario contar con empresas externas especializadas en el tratamiento, la activación y el análisis de los datos, las cuales permitan que el conocimiento del negocio y de los clientes de la empresa, quede dentro de esta.

 

#2. Analiza tu situación actual.

Seas el tipo de empresa que seas, es fundamental que analices muy bien en qué estado se encuentra tu compañía en este momento, y definas cuál es tu “gran objetivo”.

Si no sabes por dónde empezar o no tienes claro cuál debe ser tu “gran objetivo” te lo pongo fácil. Hoy día, el “gran objetivo” relacionado con los datos, al cual debe intentar llegar toda compañía, es el de la automatización. Para ello, es necesario, tal y como te comentaba en el punto anterior, disponer de toda la información en una misma base de datos, o al menos tenerla unida de algún modo. Para ello, te recomiendo que inviertas en un CDP (Customer Data Platform), el cual, lo que hace es precisamente unir la información de tu CRM con los datos que tengas en el DMP. Este te ayudará a conocer en qué situación estás, y poder comenzar a establecer una estrategia en cuanto a los datos.

 

#3. Crea un flujo de trabajo respecto a los datos.

Como he comentado, tener datos y más datos por tener, no puede ser tu objetivo, ya que los datos porqué sí no valen para nada. Tampoco tiene valor crear cuadros de mando de todo, y presentar dashboards por presentar. Al final lo que demandan las empresas, tal y como puedes leer en otro post que escribí sobre el tema y el cual te recomiendo (“Del Business Intelligence al Marketing Intelligence. Principales retos para implantarlo”), es que los datos y su análisis puedan sacar insights y conclusiones de valor que permitan conocer mejor a los clientes y poder establecer estrategias de marketing basadas en esos datos y esas conclusiones extraídas a través de los mismos.

El flujo que te recomiendo es este:

  • Recopilación de datos. Esta primera fase debe de estar integrada como parte de una estrategia concreta y dirigida hacia lo que queremos conseguir con estos datos. Una vez lo tengamos definido, los recopilaremos y los almacenaremos en el lugar correspondiente.
  • Procesamiento de datos. En el momento que se procesen los datos, se debe de tener siempre en mente, que estos sean accionables para la empresa, es decir, que puedan ser analizables y aprovechables por esta, además de que generen conocimiento.
  • Activación de datos. En esta fase, se debe de buscar convertir ese conocimiento adquirido en la fase anterior, en decisiones de valor para el negocio. Además, estas deben de procurar que se automaticen lo máximo posible.

Al final, todo este flujo debe de girar entorno al cliente, consiguiendo responder a las preguntas de ¿dónde está?, ¿cómo es?, ¿cómo impactarlo mejor?, ¿qué busca?…

 

#4. Evoluciona constantemente alrededor de los datos.

La mejor manera es a través de una CDP (Customer Data Platform) que te ayude a convertir tus datos en un activo de negocio. Esta herramienta te va a permitir también, mantener dentro de la empresa todo el conocimiento sobre ella y sus clientes, facilitándote crear previsiones y por tanto evolucionar entorno a ellas.

Gracias a toda esa información, ese conocimiento y ese valor para el negocio, podrás enfocarte en conseguir metas cada vez más ambiciosas, relacionadas quizás, con la innovación en la explotación de tus datos, por ejemplo.

 

En definitiva, debes de crear una cultura entorno al dato de marketing, que posibilite poner al cliente en el centro de tu estrategia. Esto es la base para llegar a ser una compañía Customer Centric.

 

¿Estás buscando crear conocimiento alrededor de tus clientes? Si la visión que tiene tu empresa es realizar auténticas estrategias Customer Centric, queremos hablar contigo. En Artyco tenemos equipos de Data Scientists y expertos en creación de estrategias centradas en el cliente, quienes no sólo a través de informes, sino también de conocimiento de valor para tu negocio, te ayudarán a tomar decisiones de marketing relevantes para tus clientes. ¿Hablamos?

¿Quieres rentabilizar tus datos de marketing?

Te ayudamos a convertir tus datos de marketing en un activo para tu negocio. Contacta con nosotros y descubre a donde puedes llegar.

SOBRE NOSOTROS

Somos un equipo de profesionales compuesto por 100 personas, preocupados por los datos, nuestros clientes y cómo hacer que estos lancen campañas más eficaces centradas en el usuario. Somos intelligence customer centric, innovación y tecnología. #SomosArtyco

MADRID

C/ Playa de Liencres 2. Edif. Londres Oficina 3 – 1º piso, Parque Europa Empresarial, 28230 Las Rozas (Madrid)

SALAMANCA

Parque científico universidad de Salamanca. Edificio M3 – Oficina P107 37185 Villamayor (Salamanca)

hola@artyco.com

91 640 41 50

Share This